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The basis of this tutorial is a combination of my engineering education, 60 years in ham radio, my
work as vice-chair of the AES Standards Committee working group on EMC, and extensive re-
search on RFI in the pro audio world where I made my living.  That work is documented in techni-
cal papers and tutorials that can be downloaded from the publications section of my website. For
this latest  revision, much of  the material  on common mode chokes for transmitting has been
moved to a new applications note. k9yc.com/2018Cookbook.pdf   

Chapter 1 – Some Fundamentals
To solve interference problems, we must understand them. So we'll begin by describing the ways
that RF interference is coupled into equipment and detected. There are several principal mecha-
nisms at work.  You should study this tutorial thoroughly to understand how these things work. 

Detection at Semiconductor Junctions  Every semiconductor junction, whether part of a diode,
transistor, or integrated circuit, is quite nonlinear, especially in the voltage region where it is begin-
ning to conduct.  In analog circuits, we prevent this non-linearity from causing distortion by prop-
erly biasing the circuitry, by using lots of negative feedback, and by preventing the signal from be-
ing large enough to cross into the cutoff region. 

Thanks to this non-linearity, every semiconductor junction functions as a square law detector, de-
tecting any RF signal it sees.  A good designer prevents detection by shielding the equipment and
its wiring, by filtering input and output wiring, and even by bypassing the junction by a capacitor.  

Since virtually all detection that causes RFI follows square law, the strength of the signal detected
by audio equipment, telephones, and other equipment will increase (or decrease) as the square of
any increase (or decrease) in RF level at the detector. In other words, the strength of the detected
RF changes by twice the number of dB that the RF signal changes.  This means that if we manage to
reduce the interfering RF signal by 6 dB, the detected audio will drop by 12 dB.  This is a very use-
ful thing – it means that we may not need "an elephant gun" to solve many interference problems. 

Antenna Action  The most fundamental cause of radio interference to other systems is the fact that
the wiring for those systems, both inside and outside the box, are antennas. We may  call them
"patch cables" or "speaker cables" or "video cables" or "Ethernet cables," or printed circuit traces,
but Mother Nature knows that they are antennas!  And Mother Nature always wins the argument. 

When we transmit, some of the RF from our transmitter is picked up by those unintentional anten-
nas, and RF current flows on them. What happens to that current determines whether there will be
interference, and how severe it will be.  We know that antennas work in both directions – that is,
they follow the principle of reciprocity – so when RF trash from inside the box flows on those an-
tennas, it is radiated as noise and we hear it on the ham bands. 

Fig 1 shows a simple antenna we’ve all  used,
probably with our first radio receiver. We con-
nected a random wire to our receiver, and the
antenna current flowed through the receiver to
a "ground" that might have been a driven rod,
but was more likely the safety ground of the AC
power  line  (the  third  pin  on  the  AC  socket,
known in North America as the "green wire").
Even if the radio was double insulated so that it
didn't  require  the  green  wire  connection,  RF
current  still  flowed  through  the  stray  capaci-
tance  of  the  power transformer  to  the  power
line and made the radio work. Fig 1 – A simple random wire antenna 

RF picked up on the antennas we call loudspeaker wiring, video cables, the coax from the cable TV
system or a rooftop TV antenna, flows through equipment to get to the AC power system safety
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ground.  Hams understand that some antennas are more effective than others. An antenna that is
close to resonance will work better than one that is not. Long antennas tend to pick up more RF
than short ones. Think about these fundamental principles when trying to diagnose which cables
are bringing your RF into a given system (or radiating their trash into your receiving antenna). 

A path to "ground" or the power system is not always needed to produce antenna action. The whip
antenna on our VHF and UHF handheld radios uses the radio, capacity-coupled to our hand that
holds it, as a counterpoise (that is, to provide "the other half of the antenna"). All that is required
for this to work is that the size of the counterpoise must be a significant fraction of a quarter wave
(or larger) so that it can "sink" the antenna current. 

Common Mode and Differential Mode Signals  A  differential mode signal is one that exists  be-
tween the conductors of a cable. At any given point along the cable, current flowing on one con-
ductor is precisely balanced by current flowing in the other direction on the other conductor. The
intentional signals carried by cables are differential mode signals – the audio or video signal in a
home audio system, Ethernet signals on CAT5/6 cable, and the RF signal carried by the feedline
connecting our antennas to our transceivers.  

A common mode signal is one that places equal voltage on all conductors – that is, the voltage be-
tween the two ends of the cable are different, but there is no voltage between the conductors. An-
tenna action produces a common mode voltage and current along a cable.  The antenna current in-
duced on audio and video wiring is a common mode signal. That is, with "ideal" cable, there is no
differential voltage between the signal conductors as a result of this antenna action. If the cable is
shielded, nearly all of this current flows on the shield (and skin effect causes it to flow on the out-
side of the shield). If the shield is ideal (that is, if the current is distributed with perfect uniformity
around it), the field inside the shield will be zero, and thus none of this antenna current will flow
inside the cable. Conversely, when a cable shield is carrying differential mode current, as in the
case of coax, skin effect will cause that differential mode current to flow on the inside of the shield.

The real world is not ideal, so most interfering signals will simultaneously exist in both common
mode and differential mode, but in most real world conditions, one or the other mode dominates. 

Several cable defects (essentially manufacturing tolerances) certainly can and do convert this "com-
mon mode" antenna current to a differential signal (that is, a voltage between the signal conduc-
tors), but that is rarely the most powerful coupling mechanism.  One common defect that affects
both balanced and unbalanced cables is imperfect construction of cable shields. In even the best
"real world" balanced twisted pair cables, there are imbalances in the capacitance between "red"
and "black" conductors to the shield on the order of 5%. [B. Whitlock, JAES, June 1995] In balanced
paired cables that use "foil/drain" shields, there is even more imbalance in the inductive coupling
between each conductor  and the  shield.  Noise  (or  RFI)  coupled by  this  mechanism is  called
"shield-current-induced noise," or SCIN. [N. Muncy, JAES, June 1995] All three of these mecha-
nisms convert shield current to a differential signal at system input and output terminals. 

Another imperfection in shielded cable is often quantified as its transfer impedance, which is de-
fined as ratio of the differential voltage induced inside the cable to common mode current on the
shield. Its units are Ohms, a low value is better, and the lower limit is the resistance of the shield
at the frequency of interest.  The overall quality, percent coverage, and uniformity of the shield
also contribute to the transfer impedance – a less dense braid or a shield with poor uniformity
raise the transfer impedance, causing more noise to couple by this method. Mass-market cables
sold to connect home entertainment systems often have very poor quality shields and high transfer
impedance. The quality of shields of coaxial cables designed for radio systems varies widely. Like
most other things, you get what you pay for.  

If the cable is an unshielded pair (loudspeaker cable, for example), RF will be induced approxi-
mately equally on both conductors (but, depending what the input circuit of the equipment looks
like at RF, current flow into the equipment may not be equal on both conductors). This can also
produce a differential voltage at the input (or output) terminals. 

Output Wiring is Important Too!  It is well known, for example, that RF interference is often cou-
pled into the output stage of audio equipment – for example, the power amplifiers that feed loud-
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speakers or headphones. There is always feedback around that output stage, so RF present at the
output will follow the feedback network to the input of a gain stage, where it will be detected and
amplified. This problem is made much worse when parallel wire cable (zip cord) is used to feed
the loudspeakers or headphones, and can usually be solved simply by replacing the zip cord with a
twisted pair of POC (plain ordinary copper). [Pseudo-scientific advertising hype for exotic cables
notwithstanding, it was shown nearly 30 years ago that #12 copper twisted pair (or #10 for very
long runs) is a nearly ideal loudspeaker cable.]  [R. A. Greiner, "Amplifier Loudspeaker Interfacing,”
JAES Vol 28 Nr 5, May 1980] As we will discuss later, the  twisting of a pair greatly reduces the
level of RF that the wiring couples to circuitry. 

Power Supply and Control Wiring can also act as antennas.  When I bought the house I owned in
Chicago, I upgraded the electrical wiring and put all of it in steel conduit (EMT). This shielded the
wiring, so that only the short power cords between equipment and the wall outlets could act as
antennas.  The house I recently bought in California is wired with no conduit, using unshielded
parallel conductors. Thanks to its length, and the fact that it is not shielded, this wiring acts as an
effective receiving antenna for the RF I am transmitting, and an effective transmitting antenna for
the RF trash generated by computer equipment, power supplies for low voltage lighting fixtures,
and even battery chargers.

Current Returns to its Source  Current flows in a complete circuit that includes the source of the
current.  The circuit will couple noise inductively, and also by antenna action.  The cause of many
RFI and noise problems, as well as the solution to them, lies in identifying and controlling these
circuits. Always ask, "Where does the noise (or RFI) current flow?" 
Loop Area  One of the most fundamental laws of electrical circuits is that the current that is mag-
netically induced between two circuits is proportional to the loop area of each circuit. Making the
loop area small also minimizes the extent to which the wiring can act as an antenna.  When we use
a closely coupled pair of conductors to form a transmission line, we are reducing the loop area,
which reduces the total current induced in the loop by an interfering signal, and the total magnetic
field produced by current in that loop. The transmission line, of course, has other useful proper-
ties. More on this later on.  

The equipment designer can also use multilayer printed circuit techniques to place a "ground" (ref-
erence) plane next to all signal wiring, turning each circuit trace into an unbalanced transmission
line, where the return current is carried on the reference plane under wiring. A  single reference
plane makes a very large reduction in the ability of that circuit trace to receive interference; sand-
wiching it between two such planes virtually eliminates it. These techniques, called microstrip (one
plane), or stripline (the sandwich), are widely used by better designers. They reject noise coupling
both inside and outside the equipment by drastically reducing the loop area of the current path
(and have the additional benefit of making high speed data circuits behave better because they are
transmission lines). 

Loaded Words That  Cause Misunderstandings  One of  the most overused and misunderstood
words in electronics is "ground" (or "earth" in British English).  There are several important and
common uses of the words. One meaning is an actual connection to mother earth. Some common
earth connections include the steel structure of a building, a buried conductive water pipe, a con-
crete encased grounding electrode (called a Ufer, after its inventor, Herbert Ufer), and, of course,
one or more conductive rods driven into the earth. [Concrete mixes vary widely in their conductiv-
ity – most we are likely to encounter are highly conductive, but some are effective insulators.]  The
primary function of this earth connection is lightning protection. 

A second common use of the word "ground" (or "earth" in British English) is a third conductor that
is part of the power system wiring that should never carry current (except in the case of a fault) but
connects the conductive enclosures of equipment to a common point within the power system.
This "green wire" or third pin in the outlet in North American power systems, is called the "equip-
ment ground" (or "protective earth" in British English). The green wire is required to be connected
to all exposed conductive parts of electrical equipment "that might be energized" in the event of
equipment failure. The purpose of this connection is to provide a sufficiently robust current path
that a fuse will blow or circuit breaker will trip in the event of equipment or wiring failure that
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causes the chassis to be "hot," thus protecting people from electrical shock and preventing fires. 

A third common use of the word "ground" (or "earth" in British English) is to describe "circuit com-
mon" or "circuit reference" within equipment. Circuit common should nearly always be connected
to the power supply reference, and to the shielding enclosure of the equipment.  If the source of
noise is within equipment, circuit common is reference for the noise voltage (and current), and it is
the point to which that noise current wants to return. 

A fourth common use of the word "ground" is as the "return" for an unbalanced antenna like a verti-
cal or long wire.  In this application, the antenna needs some conductor to be a low impedance
"sink" for the antenna current and a return for the fields produced by antenna current. The radials
for an elevated or ground-mounted vertical antenna serve this function.  

Ground Wiring   Some hams like to think of the earth as if it were somehow a "sink" into which all
noise can be poured, never to bother us again.  Indeed, you'll find lots of bad advice to solve RFI
problems with "a better ground." In fact, nothing could be further from the truth. An earth connec-
tion is rarely part of a solution to RF or noise problems.  Rather, we need a better understanding of
the four common meanings of “ground,” that “ground” is not a single point, and that connections
between them change current paths. [There are exceptions to every "rule," and this no exception.
See "Shunting Common Mode RF to Earth" later in this tutorial.]

Consider a noise filter hanging between some piece of noisy equipment and the power line, with
capacitors from the "hot" and "neutral" to "ground." What is that "ground?"  It is circuit common and
the shielding enclosure of the equipment, the green wire in the power cord, which is connected to
the equipment ground in the power system, which goes to the breaker panel, which is in turn
bonded to neutral and a real earth connection at the service entrance to our building (and, if we've
done it right, there should be a bond between the power system ground and any grounds we've
added for our radio equipment). In most systems, the green wire follows a rather long path – typi-
cally a quarter wave on 80 meters, and perhaps even on 160 meters. That current path is an an-
tenna, and any RF current flowing on that conductor will radiate!  In fact, the connection to earth
may increase current flow. Like any other radiated RF signal, our receiving antennas will hear it.  All
of those "ground" connections must be present to have a safe installation, but it is the combination
of the high series impedance of the filter's choke and the connection between the filter's "ground"
and the shielding enclosure of the equipment (and it must be very short) that suppresses the noise.
The earth connection provides lightning safety. 

This basic scientific fact has major implications in the design of filters intended to prevent noise
coupling from noisy equipment to our ham stations. If  we add a filter to wiring that enters or
leaves a piece of noisy equipment, it is the shielding enclosure for that equipment to which any
"ground" of our filter should return (and, of course, circuit common should also be connected to
that shielding enclosure). All connections between the filter and the noisy equipment should be as
short as possible (what my old EE professors liked to call "zero length" to emphasize the impor-
tance of making them short). Why?  First, to minimize the loop area, and thus the inductance.
Second, to minimize antenna action.  More about this when we discuss specific filter designs. 

Insufficient Input and Output Filtering  As hams, we know that equipment needs good input and
output filtering to prevent RF from coming in on input and output wiring. Beginning in the 1950's,
hams operating the HF bands were deluged with TVI complaints because television manufacturers
failed to include high pass filters in their sets. Likewise, audio equipment needs good low pass fil-
tering to reject our signals. Many myopic designers of "high futility" audio gear (and even some
professional gear) don't include low pass filters because they don't want to degrade the phase re-
sponse of the audio path. While good phase response is certainly important, so is RF rejection.
Good engineering can satisfy both needs without compromise. Ever since those early days, hams
have always assumed that a good low pass filter will kill RFI in audio systems, and a good high
pass filter will kill interference to FM and TV. Unfortunately, while good filtering is important, other
mechanisms are far more important in most real world situations.

Shield Resistance adds hum and buzz to unbalanced wiring (audio, video, and data (RS232).  The
"green wire" at every AC outlet is at a different potential, thanks to leakage current of equipment
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plugged into that outlet, as well as other leakage current flowing on the green wires. When that
equipment is interconnected with unbalanced wiring, the difference in potential (60 Hz and its har-
monics, plus noise) causes current flow on the shield, and the IR drop is added to the signal. A
"beefy"  shield (big  copper)  minimizes  R –  that's  why the best  video cables  use heavy copper
shields!  Audio transformers eliminate the hum/buzz by breaking the current path at DC and audio
frequencies, but most hum and buzz in your ham station can be solved without a transformer –
simply power all interconnected gear from the same outlet, bond equipment all chassis’ together,
and use coax with beefy copper shields for audio.  An unshielded transformer can make matters
worse, coupling noise from a power transformer into its unshielded windings. See Chapter 8 for
more.

The  Pin  1  Problem:   The  most  common way
that  hum,  buzz,  and  RF  interference  enters
equipment is via a design defect first widely un-
derstood by the pro audio community thanks to
the  work  of  Neil  Muncy,  (ex-W3WJE).  He
named it  "the pin  1 problem,"  because it  is  a
mis-wiring of the shield of audio cables – pin 1
in the XL connector commonly used for pro au-
dio, but it is just as much a problem in unbal-
anced interfaces of all types, as shown in Fig 2.  

  Fig 2 – The Pin 1 Problem
The proper connection for a cable shield to equipment is the shielding enclosure (chassis), but
products with a "pin 1 problem" connect the shield to the circuit board instead.  Nearly all con-
sumer equipment, including even the most expensive "high futility" gear, is built with pin 1 prob-
lems. Virtually all computer sound cards have pin 1 problems.  So do most RS-232 interfaces and
nearly all ham equipment – indeed, almost all RFI problems we describe as "RF in the shack" have
pin 1 problems as their root cause!   
Fig 2 illustrates both right and wrong connection of the shield. The trouble-free connection on the
right goes straight to the shielding enclosure, so shield current flows harmlessly out the safety
ground on the power cord.  Any noise (or RF) on the cable shield stays "outside the box." 

The connection on the left, however, is a pin 1 problem. Current flowing on the shield bypasses
the shielding enclosure and is forced onto the "ground bus" – that is, "signal common." To get to
the power system ground, noise current must follow that "ground bus" around the circuit board –
what EMC guru Henry Ott calls "the invisible schematic hiding behind the ground symbol." The
wires and circuit traces that make up that invisible schematic have resistance and inductance by
virtue of their length, and the IZ voltage drops across those R's and L's are coupled into each "gain
stage" that connects to the ground bus! Once that happens, every semiconductor junction that
"sees" the RF will detect it, and succeeding gain stages will amplify the detected RF. 

What if there is no "shielding enclosure?"  Fig 3a and 3b shows how to avoid pin 1 problems with
unshielded or partially shield equipment. (Of course, unshielded equipment has other potential
problems, which we'll talk about later.) 

Fig 3a – 120VAC power Fig 3b – 12VDC power
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Why is equipment built with pin 1 problems?  Three reasons. First, "fuzzy thinking" on the part of
engineers, who have lost track of where noise current flows.  Second, the construction techniques
used in modern equipment, and the connectors built to support those techniques, make it more
likely that pin 1 problems will happen.  In "the old days," we mounted an RCA connector or phone
jack by drilling a hole and screwing it down to the chassis.  Today, those connectors come with
solder tabs for mounting directly to a printed circuit board, which is then built, tested, and fitted
into an enclosure. Screwing those connectors down to the enclosure increases cost significantly!
And FIXING pin 1 problems in equipment having this kind of construction can be quite difficult.
Third, “Balkanization” of engineering education, where those concentrating on digital systems get
little or no exposure to subjects like physics, circuit analysis, transmission lines, and antennas.  

RFI and Pin 1 Problems  There are three ways to cure RFI coupled by pin 1 problems.  The first two
methods are obvious – modify the equipment to eliminate the pin 1 problem, or rewire the con-
nections so that the shield goes to the proper connection point, as shown in Figs 2, 3a, and 3b.
Unfortunately, the way that most equipment is built usually makes both of these methods difficult
or impossible to implement. 

The third method for curing RFI coupled by pin 1 problems is to eliminate or reduce the current.
This is usually the best (the most practical, effective, and cost-effective). This is what we are doing
when we use a ferrite choke on the wiring connected to a pin 1 problem, lift the shield at the re -
ceiving end of a balanced audio cable, or bond all our equipment together with short fat wires!
We'll study ferrites in Chapter 2, and bonding in Chapter 8. 

Shielding  The wiring inside equipment can also act as an antenna if the designer allows it to do so.
There are several ways to prevent this. The obvious one is to shield the equipment and bond (that
is,  make a solid electrical  connection) that  equipment shield to all  cable shields entering that
equipment. Note that while we call circuit common "ground," no connection to earth (or even cir-
cuit common) is needed for shielding to be effective. (The late Neil Muncy observed that he never
saw an aircraft trailing a ground wire, but the extensive instrumentation needed to operate and con-
trol it work just fine.) 
Twisted-Pair Cable  is the single most important tool we can use to reduce RF pickup on an inter -
connecting cable.  In many circuits, twisting is far more important in rejecting noise and RF than a
cable shield.  Since this statement may seem counterintuitive, let's examine why it is true.  

A cable shield prevents electric field (capacitive) coupling, but it has little effect on magnetic fields
(that is, inductive coupling).  This is true at low frequencies because cable shields are not made of
magnetic material. It is true at high frequencies because of imperfections in the shield that de-
crease the uniformity of current flow on the shield.  

A transmission line does reject magnetic fields, but it does this by virtue of the mutual coupling be-
tween the conductors that causes the current and voltage induced in them by an external field to
be equal and opposite, so they cancel at the input circuit to which the cable is connected. The de-
gree of this equality depends on the coupling coefficient k, which is typically on the order of 0.7
for a closely spaced pair. An ideal coaxial cable, however, has a coupling coefficient of 1 above the
cutoff frequency of the shield (see below).  So, the shield of a coaxial cable is not a magnetic
shield, it is an electric shield. Magnetic noise rejection is the result of mutual coupling between the
center conductor and the shield, not because of shielding.  

Another important fact explains why coaxial cables don't reject magnetically coupled low frequency
hum and buzz. Cables don't exhibit mutual coupling at frequencies where the resistance of the
conductor is greater than its inductive reactance. The low frequency at which this transition occurs
is called the shield cutoff frequency.  For most cables, this is between about 1 kHz (coax with a
"beefy" double copper braid shield") and 20 kHz (coax with a foil/drain shield).  

Twisting works to reject noise from the magnetic field because it causes the voltage induced in the
two conductors to be more nearly equal. It also reduces electric field coupling in balanced circuits.
In general, the greater the number of twists per inch and the uniformity of the cable’s construction,
the more equal the induced voltage will be to the highest frequency. That's because any interfering
field will vary with position based on the wavelength of the field. To understand this, consider any
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interfering source and a cable running past it. If the cable is not twisted, one conductor will be
closer to the source, so more noise will be coupled to it than the other conductor. If the conduc-
tors are twisted, one conductor will be closer at one point along the cable, but one half twist fur-
ther along the cable, the other conductor will be closer. The difference in spacing between the
conductors may not sound like it should cause much difference in level, but if we need 100 dB of
cancellation, the two voltages must be equal within .0001%, a very small margin of error.  

Twisting is such a powerful mechanism for reducing noise coupling that telephone circuits have al-
ways used unshielded twisted pair.  Likewise,  very high speed Ethernet  circuits  are carried on
tightly twisted pairs manufactured to close tolerances. To further reduce crosstalk from one pair to
another, each pair in the cable is twisted at a slightly different rate. The author has demonstrated
that sensitive microphone circuits connected with unshielded CAT6 cables are actually less suscep-
tible to noise pickup than  shielded balanced pairs, both at audio frequencies and at VHF/UHF!
This is true because the degradation in rejection due to imperfections in the cable tend to be
greater than the relatively small benefit of the electric shield! 

CAT5/6 cables carrying Ethernet data  do radiate RF trash, but most of that radiation is common
mode – that is, longitudinally along the cable – because the line drivers on either (or both) ends of
the cable have poor common mode isolation. But this is a defect in those line drivers, not in the
cable! We'll address RFI filtering of Ethernet cables later on. 

RFI and Poorly Shielded Equipment  There are few practical RFI fixes for poorly shielded equip-
ment.  The most obvious is to shield it, but this is usually either expensive or impractical if it wasn't
built with good shielding. We could, for example, wrap it in aluminum foil, but to make that shield-
ing effective, 1) we must bond the shields of all wiring that enters and leaves the equipment to that
foil shield; and 2) any openings in the shield must be small as a fraction of the wavelength of the
interfering signal;  [It is quite difficult to watch a TV set, or adjust the controls of a stereo system,
that is surrounded by aluminum foil!];  3) Modify the defective product by adding filters (ferrite
beads, bypass capacitors) to the junctions that are detecting the RF [you may have time for a sci -
ence project like this, but I don't]; 4) use the bucket treatment.  
The Bucket Treatment:  Find a bucket large enough to hold the defective equipment, and fill the
bucket with water. Put the equipment in twice. Take it out once.

Summary  RF is coupled into equipment on wiring that acts as receiving antennas – loudspeaker
wiring, telephone wiring, audio interconnect wiring, antenna wiring, even wiring inside equipment
that is poorly shielded.  The pin 1 problem is a widespread design defect in computer gear, audio
and video equipment, and even ham gear, and is a major cause of RFI.  Imperfect construction of
cables also converts RF to a differential mode signal.  Once "inside the box," RF is detected by
semiconductor junctions, and added to the signal where it is heard as interference.  Most antenna
action outside the box can be suppressed by suitable ferrite chokes that block the current.  

Chapter 2 – Ferrites  
Ferrites can be a very effective tool for eliminating RF interference between systems. To use them
effectively, we must understand them. Ferrites are ceramics consisting of various metal oxides for-
mulated to have very high permeability. Iron, manganese, manganese zinc (MnZn), and nickel zinc
(NiZn) are the most commonly used oxides. When a ferrite surrounds a conductor, the high per-
meability of the material provides a much easier path for magnetic flux set up by current flow in
the conductor than if  the wire were surrounded only by air.  The short  length of wire passing
through the ferrite will thus see its self inductance “magnified” by the relative permeability of the
ferrite. The ferrites used for suppression are soft ferrites – that is, they are not permanent magnets.

Permeability is the characteristic of a material that quantifies the ease with which it supports a
magnetic field. Relative permeability is the ratio of the permeability of the material to the perme-
ability of free space. The relative permeability of non-magnetic materials like air, copper, and alu-
minum is 1, while magnetic materials have a permeability much greater than 1. Typical values
(measured at power frequencies) for stainless steel, steel and mumetal are on the order of 500,
1,000 and 20,000 respectively. Various ferrites have values from the low tens to several thousand.
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Fig 4 – A toroidal ferrite choke Fig 5 – Ferrites are made in many forms

Fig 6 – Atypical ferrite mate-
rial (Fair-Rite #61)

Fig 7a – Data sheet imped-
ance

Fig 7b – Over-simplified equivalent
circuit of a ferrite choke

Fig 7c – A better equivalent circuit
of a ferrite choke

Fig 8 – A UHF material (Fair-Rite #61)

Fig 6 shows complex permeability µ’S and µ’’S for a ferrite
material optimized for suppression at UHF. [For the engi-
neers among us, µ = µ’S + j µ’’S.  Thus µ’S is the compo-
nent  of  permeability  defining  ordinary  inductance,  and
µ’’S describes the loss component.]

Product data sheets characterize ferrite chokes by graph-
ing  their  series  equivalent  impedance,  and  chokes  are
usually analyzed as if their equivalent circuit had only a
series resistance and inductance, as shown in Fig 7a and
7b. The actual equivalent circuit is closer to Fig 7c. We’ll
learn more about it as we go along.  

Fig 8 is the manufacturer’s data for a cylindrical bead of 5
mm o.d. and 23 mm long, defined in terms of the series
R and XL. Interestingly, XL goes off the graph above reso-
nance,  but  it  isn’t  zero.  If  you have  the equipment  to
measure  it  accurately,  you  will  see  negative  reactance
contributed by the capacitors in Fig 7c.  

Below  resonance,  the  impedance  of  a  wire  passing
through a ferrite cylinder is proportional to the length of
the cylinder. Fig 9 shows the impedance of a family of
beads that differ primarily in their length. There are also
small differences in their cross section, which is why the
resonant frequency shifts slightly. 

Manufacturers vary the chemical composition (the  mix)
and the dimensions of ferrites to achieve the desired elec-
trical  performance  characteristics.   Fig  8  is  data  for  a
sleeve  made of  a  mix (#61)  useful  in  suppressing  RFI
above 200 MHz. The #43 mix used for the beads of Fig 9
is optimized for suppression at VHF (30-300 MHz). 

Like all inductors, the impedance of a ferrite choke below
resonance is approximately proportional to the square of
the number of turns passing through the core. Fig 10 is
measured data for multi-turn chokes wound around the
toroid of Fig 4 (2.4" o.d x 1.4" i.d. x 0.5").  This ferrite is
optimized for the VHF range (30-300 MHz). Fig 12 shows
data for chokes wound around the same size toroid, but
using  a  material  optimized  for  suppression  above
200MHz.  The data of Fig 11 are for toroids of the same
size, but wound on a material optimized for use below 2
MHz.  



Understanding and Solving RF Interference Problems                                                                  Page   9  

Fig 9 – Small cores of different lengths

We'll study the LD CD resonance first. A classic text (Soft
Ferrites,  Properties  and  Applications, by  E.  C.  Snelling,
published in 1969), shows that there is a dimensional res-
onance within the ferrite related to the velocity of propa-
gation (VP) within the ferrite and standing waves that are
set up in the cross-sectional dimensions of the core. In
general, for any given material, the smaller the core, the
higher will be the frequency of this resonance, and to a
first approximation, the resonant frequency will double if
the core dimension is halved. In Fig 7c, LD and CD ac-
count for this dimensional resonance, and RD for losses
within the ferrite. RD is mostly due to eddy current (and
some hysteresis) in the core.

Now it's time to account for RC , LC, and CC.  Note that there are  two sets of resonances for the
chokes wound around the #78 material (Fig 11), but only one set for the chokes of Fig 10 and 12.
And for all three materials, the upper resonance starts just below 1 GHz for a single turn and moves
down in frequency as the number of turns is increased. Fig 14, the reactance for the chokes of Fig
11, also shows both sets of resonances. That's why the equivalent circuit must include two parallel
resonances!

Fig 10 – Impedance of multi-turn chokes
wound on the core of Fig 4 (Fair-Rite #43).

(Measured data)

Fig 12 – Impedance of multi-turn choke on a
core of the size/shape of Fig 4, on a material
optimized for performance above 200 MHz
(Fair-Rite #61).  (Measured data)

Fig 11 – Impedance of multi-turn chokes on a
core of  the size/shape of Fig 4, but of a mate-
rial optimized for  performance below 2 MHz

(Fair-Rite #78) (Measured Data)

Fig 13 – Chokes of Fig 10 with1-5 turns, mea-
sured  to  1  GHz  (Fair-Rite  #43)  (Measured
Data)
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Single Values For Permability  We see that µ varies with frequency, and is complex, yet those who
don't understand this often use a single number for µ. When a single number for µ is quoted, it is
the value of µ at frequencies well below resonance, where losses are small and the graph of im-
pedance is a straight line increasing linearly with frequency. 

The difference between these materials that accounts for this behavior is their chemical composi-
tion (called their mix).  #78 is a MnZn ferrite, while #43 and #61 are NiZn ferrites. The velocity of
propagation (VP) in NiZn ferrites is roughly two orders of magnitude higher than for MnZn, and, at
those higher frequencies, there is too much loss to allow the standing waves that establish dimen-
sional resonance to exist.  

Fig 14 – Series reactive component of the chokes of Fig 11  (Measured Data)

Fig 15 
A multi-turn choke

To understand what’s happening, we’ll return to our first order
equivalent circuit of a ferrite choke (Fig 15).  LC, and RC, and CC
are the inductance, resistance, (including the effect of the  µ  of
the ferrite), and stray capacitance associated with the wire that
passes through the ferrite. This resonance moves down in fre-
quency with more turns because both L and C increase with
more turns. The dimensional resonance does not move, since it
depends only on the dimensions of the ferrite and its VP. 

What is the source of CC if there's no "coil," only a single wire passing through a cylinder?  It's the
capacitance from the wire at one end of the cylinder to the wire at the other end, with the ferrite
acting as the dielectric.  Yes, it's a very small capacitance, but you can see the resonance it causes
on the data sheet.    

Let’s talk briefly about series and parallel equivalent circuits. Many impedance analyzers express
the impedance between their terminals as Z with a phase angle, and the series equivalent R S, and
XS.  They could just have easily expressed that same impedance using the parallel equivalent RP and
XP  BUT –  RP and XP will have values that are numerically different from RS and XS.  There is also an
important analytical “mindset” we need to adopt when thinking about how series and parallel cir-
cuits behave.  In a series circuit, the larger value of RS and XS has the greatest influence, while in a
parallel circuit, the smaller value RP and XP is dominant. In other words, for RP to dominate, RP it
must be small.

Both expressions of the impedance are correct at any given frequency, but whether the series or
parallel representation is most useful will depend on the physics of the device being measured and
how that device fits in a circuit. We’ve just seen, for example, that a parallel equivalent circuit is a
more realistic representation of a ferrite choke – the values of RP, LP, and CP will come much closer
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to remaining constant as frequency changes than if we use the series equivalent.  [RP, LP, and CP
won’t be precisely constant though, because the physical properties of all ferrites – permeability,
resistivity, and permittivity – all vary with frequency.] 

Fig 16a – Series element of divider is a par-
allel resonance circuit

Fig 16b – Series element of divider is series
equivalent circuit used for ferrite data sheet

But virtually all product data for ferrite chokes is presented as series equivalent R S and XS. Why?
First, because it’s easy to measure and understand, second, because we tend to forget there is
stray capacitance, and third because ferrite chokes are most often used to reduce current in a se-
ries circuit! Fig 16a and 16b are both useful representations of the voltage divider formed by a fer-
rite choke and a small bypass capacitor across the device input. Which we use will depend on
what we know about our ferrite. If we know RP, LP, and CP and they are constant over the fre-
quency range of interest, Fig 16a may be more useful, because we can insert values in a circuit
model and perhaps tweak the circuit. But if we have a graph of RS and XS vs. frequency, Fig 16b
will give us a good answer faster. Because we will most often be dealing with RS and XS data, we
will use the series circuit for our remaining examples. Another reason for using RS and XS is that the
impedance of two or more ferrite chokes in series can be computed simply by adding their RS and
XS components, just as with any other series impedances! When you look at the data sheet plots of
RS,  XL, and Z for a standard ferrite part, you are looking at the series equivalent parameters of their
dominant resonance. For most MnZn materials, it is dimensional resonance, while, for most NiZn
materials, it is the circuit resonance. 

Fig 17 – The choke interacts with the cable

Fig 17 shows how a choke might be used to reduce common mode current flow on a cable. Be-
cause that cable is also an antenna, it will  have some impedance of its own, depending on its
length and the frequency of the interfering signal. If the antenna is shorter than a quarter-wave it
will look like a capacitance, and can resonate with the inductance of the ferrite choke. When this
happens, the current is limited only by the resistance of the circuit – in this case, the loss compo-
nent of the choke plus RR and RIN (the radiation resistance and the input resistance). The choke can
also be capacitive, and the antenna can be inductive, as it would be if it were longer than a quarter-
wavelength. Antenna theory tells us that these impedance relationships will repeat in increments of
½ wavelength. The last thing we want is to increase the RF current, and we would prefer to not
have to worry about how long the antenna (mic cable) is. 

Thus we state three general rules about the use of ferrites as chokes. 1) More impedance is better.
2) All ferrite chokes should be designed to operate in the frequency range where their series equiva-
lent resistance is large and their series equivalent reactance is small. 3) These conditions are satisfied
at or near the choke's resonant frequency.  We do this by selecting a suitable material, core size,
and number of turns.  These rules apply to both single turn and multi-turn chokes, and they apply
to chokes (but not transformers) used for transmitting as well.  

#31 Material is a Problem Solver  Fair-Rite’s relatively new #31 material (introduced around 2004)
is extremely useful, especially if some component of your problem is between 1.5 – 150 MHz.
Measured data for this material is displayed in Figs 18a and 18b. Compare it with Figs 19a and
19b, which are corresponding plots for the older #43 material. We'll discuss baluns and chokes in
detail in Chapter 6. 
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The new #31 material is useful because it exhibits both of the resonances in our equivalent circuit
– that is, the dimensional resonance of the core, and the resonance of the choke with the lossy
permeability of the core material. Below 15 MHz, these two resonances combine (in much the
manner of a stagger-tuned IF) to provide significantly greater suppression bandwidth (roughly one
octave, or one additional harmonically related ham band). The result is that a single choke on #31
can be made to provide very good suppression over about 8:1 frequency span, as compared to 4:1
for #43.  As we will learn later, #31 also has somewhat better temperature characteristics at HF.  

Fig 18a – Impedance of multi-turn chokes on 
a 2.4" o.d. toroidal core , but made of  Fair-
Rite's new#31 mix (Measured Data)

Fig  19a  –  Impedance of  multi-turn chokes
like those of Fig 16a, but on a Fair-Rite #43
core.  (Measured data)

Fig 18b – Equivalent series resistance of the
chokes of Fig 18a  (Measured Data) 

Fig 19b – Equivalent series resistance of the
chokes of Fig 19a  (Measured Data)

A simple design problem  Now let’s do some engineering work using what we’ve learned so far.
Suppose that we have an Ethernet router that is radiating trash as a common mode signal on the
Ethernet cable that we're hearing on 30-10 meters (as it turns out, this is a very common problem).
Figs 18 and 19 tells us that 9 turns of the Ethernet cable around a 2.4" o.d. toroid made of Fair-Rite
#31 or #43 material will give us at least 2k ohms choking impedance between 10 MHz and 30
MHz.  How much that choke reduces the radiated noise will depend on a lot of factors, including
the common mode output impedance of the router, how long the Ethernet cable is (and thus its
impedance), and the common mode input impedance of the Ethernet device on the other end. 

Fig 20 is a simplified equivalent circuit for our Ethernet problem. Note that it's drawn as if one de-
vice is a transmitter and the other is a receiver, but any box that includes digital or RF circuitry is a
potential generator of RF trash. The common mode input and output impedances of the Ethernet
boxes are unknown, and they have at least some connection, maybe DC, maybe capacitive, to the
green wire at the AC outlet. Without the choke, the impedance of the antenna circuit (the Ethernet
cable and its return path) determines the current. So to achieve good suppression, we simply need
the impedance of the choke to be much higher than the series combination of the antenna and the
paths to "ground."  But – hold on a minute – what's hiding behind that ground symbol?  
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Fig 20 – Ethernet circuit

Fig 21, which includes the impedance of the path to "ground," makes it clear that there can be a lot
of variables in this simple problem. Each of the X terms may be capacitive or inductive, and they
will have different values at every frequency. Every wire in that series circuit will function as an an-
tenna, radiating any noise current that it carries. Does that mean we must throw up our hands?  Of
course not. But it clearly shows why coming up with a number for how much suppression a given
choke will yield is not a simple matter. Indeed, the best way to learn that for any given circuit is to
wind a choke that provides the greatest impedance in a practical package and try it!  

Fig 21 – Ethernet circuit, including "ground"

Do we need chokes on both ends of that cable?  The answer is, it depends. The Ethernet devices
on each end of the line are both potential generators of RF trash (because they both include digital
electronics). We also need to look at the length of the series circuit that includes the Ethernet ca-
ble. If the cable is shorter than about  λ/10 at the highest interfering frequency, a choke roughly
near the center of the cable may be entirely sufficient. A cable that is electrically longer than λ/10
(or is radiating VHF trash) is far more likely to need chokes at both ends.  And the chokes that
work at VHF are very different from the toroidal chokes that work at HF.  

In the simple circuit above, the Ethernet transmitter can be seen to feed an unbalanced dipole,
where the Ethernet cable is half of the dipole and a connection to "ground" via the power supply is
the other!  Fig 21 makes it clear that the current path is also a loop.  We must never forget that our
invisible "ground" circuit can be part of the antenna circuit, contributing both its length and radia-
tion to the problem.  And if the Ethernet device is a switch or hub that has multiple outputs, the
Ethernet cables connected to each port become part of the equivalent circuit, and because each
output includes a line driver, the cables connected to each output need suppression. 

The dc power supply for that Ethernet router may also be a source of noise, and there are two an-
tennas connected to it – the AC power line and the dc power cable going to the router.  Are either
or both of these cables likely to need treatment?  To answer this question, let's look at their likely
behavior as antennas. In a typical home, the AC power line is probably 30-50 ft long by the time it
reaches the breaker panel that feeds it, which is long enough to be a pretty good antenna on 10-30
MHz, so my next choke would go on the power line side of that power supply. On the other hand,
the cable between the power supply and the router is only 3 ft long, which means that it is unlikely
to be a good antenna below 30 MHz. So if I hear any noise on 10 meters after I've put chokes on
the Ethernet cable and the power line, I'll try a fairly small choke (7 turns around #31 or #43) on
the dc power cable. 

Ethernet trash comes in (at least) two common forms – multiple carriers of relatively constant am-
plitude, but with some modulation (birdies), and broadband hash.  The clocks are generated within
the Ethernet hardware, so frequencies vary slightly from one Ethernet box to another.  In almost
any residential neighborhood, you'll hear clusters of Ethernet birdies around 10,107 kHz, 10,122
kHz, 14,030 kHz, 18,106 kHz, 18,120 kHz, 18,167 kHz, 21,052 kHz, 21,113 kHz, 21,174 kHz,
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21,221 kHz, 21,282 kHz, 21,343 kHz, 24,878 kHz, 24,945 kHz, 28,016 kHz, 28,060 kHz, 28,120
kHz, 28,182 kHz, 28,244 kHz, 28,304 kHz, 28,366 kHz, 28,427 kHz, 50,044 kHz, 50,058 kHz,
50,105 kHz, 50,120 kHz, 50,148 kHz, 50,166 kHz. There are certainly more, but these are some
I've found (nearly all of my operation is CW).  

In any cluster, some birdies will be louder than others, depending on the behavior of the Ethernet
cables as antennas, the nastiness of the Ethernet boxes, and the proximity to your antennas.  Be-
fore you begin cleaning up your own trash, identify which signals are yours by killing power to your
own router, switch, or hub.   This is important, because even after you've killed your own trash,
you're likely to hear your neighbors (hopefully at much lower levels).  If you don't know which are
yours, you can end up chasing your tail.  And you may not be able to completely kill your own –
most of these boxes are poorly shielded, so some trash can be radiated by internal wiring.  

Chapter 3 – Back to the Basics
Threshold Effect  Looking again at the series circuit of Fig 21, let's say that for a particular antenna
(Ethernet cable) working into a particular piece of gear, the series impedance at the frequency of
the interference is 300 Ω. If we are able reduce the RF current by 6 dB, (one half), the interference
radiated by that cable will also drop by 6 dB in our ham receiver.  To do that, a choke must add
enough resistance to double the total impedance. In other words, we need to end up with 600 Ω.
But what if the antenna circuit is capacitive and our choke is inductive at that frequency? Some of
the impedance we are adding will increase the current because it resonates with the antenna, so
we may need to add more than 300 Ω to hit 600 Ω! How many times have you heard someone
say, "ferrite beads don't work on this problem – I added one and nothing happened."  In fact, they
were simply below the threshold impedance needed in that particular circuit!  Once we've hit that
threshold, adding more series impedance continues to reduce the current flow.  RF current is re-
duced by the ratio of the "before" and "after" values of the total series impedances.  Since power is
proportional to the square of the current, RF noise falls 6 dB per halving of the current flow.  If the
choke is suppressing the detection of RFI in other equipment (telephones, hi-fi systems, etc.), 6 dB
less RF translates into  a 12 dB reduction in detected RF (because all detection is square law).

Threshold effect is the reason why adding a few clamp-on beads doesn't make a dent in RFI at HF—
you need turns to hit the threshold!   

Human Perception and Level Changes  When a sound is not near the noise floor (or much louder
than other sounds), 1 dB is approximately the smallest change in loudness that most people can
hear, and a change of about 10 dB will be perceived as half (or twice) as loud.  When a sound is
close in loudness to other sounds, (room noise, or the band noise when we're trying to copy weak
DX), a change of a few dB in one of those sounds may be heard as half (or twice) as loud.  

Chokes May Be Used in Series and their impedances will add algebraically (that is, taking the sign
of the reactance into account).  For many years, "current baluns" have been made of many ferrite
cylinders at the end of piece of coax. This so-called “current balun” is really a common mode
choke, and its common mode impedance is simply the impedance of one cylinder multiplied by
the number of cores.  Baluns and chokes are addressed in detail in Chapter 6. 

Suppression at VHF  Let's suppose that we have a problem with RFI on 2 meters. The most com-
mon way to provide suppression at VHF is with one or more clamp-on cores like those of Fig 8 or
Fig 22. A good "rule of thumb" is that it usually takes at least 500-1,000 ohms to get far enough
above the threshold to "make a dent" in RFI, and more is better. Using that guideline, three of these
cores would be needed for a problem on 2 meters if there isn't already another choke in line. Like-
wise, two chokes in series, each with two turns through one of these cores would be a good start -
ing point for a problem on 6 meters (but not two turns through two cores). 

To see graphs like Fig 22a and 22b, click on their part number in Fair-Rite’s online catalog. From
the home page, click on Products, then Suppression Components, then Cable Components, then
either “Round Cable Snap-Its” or “Round Cable EMI Suppression Cores.” Limit your choices to
#31 material with the drop down selector just above the table. 
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     Fig 22a        Fig 22b

Fig 23a – Equivalent series resistance of
multi-turn chokes on a Fair-Rite #43 2.4" o.d.

toroidal core (Measured Data)

Fig  24a  –  Equivalent  series  reactance  of
multi-turn  chokes  like  those  of  Fig  18,  a
Fair-Rite #31 core.  (Measured data)

Fig 23b – Equivalent series resistance of multi-turn
chokes on a Fair-Rite #31 2.4" o.d. toroidal core

(Measured Data)

Fig 24b – Equivalent series reactance of chokes
on #31 toroids of Fig 23b  (Measured Data)

Note: All  of the data presented up to now applies to chokes wound with small  diameter  wire.
Chokes wound with cable diameters larger than about 0.2" (RG58) have more stray capacitance,
moving the resonance down in frequency to a greater extent than those wound with small wire. See
the data in k9yc.com/2018Cookbook.pdf  

Using Different Chokes in Series  All ferrite chokes along a cable do not need to be identical – in-
deed, in broadband suppression applications it may be necessary for them to be very different.
But we must remember that the complex impedances of these chokes (that is, their resistive and
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inductive or capacitive elements of their series equivalent circuit) will  add algebraically, so we
must consider the magnitude and the sign of the reactive components of each choke. Again, the
fundamental principle of using ferrite chokes for suppression comes into play – resistance always
helps us, but reactance may make things worse. When adding up the total impedance of multiple
chokes, the safest approach is to count only the series equivalent resistance of each choke. 
For example, consider a cable wound 5 turns around a toroid to provide good suppression for the
HF ham bands. Fig 23a and 23b show measured series resistance, while Figs 24a and 24b clearly
show that the impedance of these chokes is capacitive above resonance, just as we would expect
from Fig 15.  Now, we add one or more of the clamp-ons shown in Fig 22.  Between 30 and 100
MHz, the clamp-on is below resonance, so it looks like a lossy  inductance. Thus, with both the
VHF clamp-ons and the toroid in series on a cable, there will be some cancellation of their reac-
tances in this range, but their resistive components will always add (improving the suppression).  
When using multiple chokes to cover different frequency ranges, always place the choke covering
the highest frequency range nearest to the equipment being protected.  The wire between the
equipment and that choke can still function as an antenna. 

Large Signal Performance  Up to now, we've talked only about the "small signal" behavior of ferrites
– that is, the field produced by current in the ferrite material is too small to cause heating or non-
linearity.  We can define a linear device as one that has the same impedance for all values of ap-
plied voltage and current. Like other magnetic materials, ferrites will saturate at some high level of
current.  In other words, the ferrite behaves linearly if the field within it is small, but becomes non-
linear as it begins to saturate.  

DC Bias  As a magnetic material approaches saturation its permeability decreases, approaching
zero at saturation.  Consider a ferrite surrounding a conductor carrying both signal and a DC cur-
rent.  The total field at any instant is the result of the instantaneous current, so if the DC current is
large, it can move all or part of the signal into the non-linear region of the ferrite. The DC bias can
also cause heating.  

Non-Linearity  is generally a bad thing, because it causes distortion.  That distortion will take the
form of harmonics for a simple waveform (a constant sine wave of a single frequency) and both
harmonics and intermodulation products for a complex waveform (a keyed sine wave, or transmit-
ted audio).  We'll talk more about this in our discussion of transmitting baluns and chokes.  

Non-Linearity as a Tool   Non-linearity isn't always bad.  Bob Kavanagh, VE3OSZ, showed how the
inductance of a coil wound around a toroid could be varied by controlling DC bias applied to the
coil. In this application, both the bias and the signal were sufficiently small that non-linearity was
also small.  ["Remote tuning of a low-frequency loop antenna," QEX May/June 2003] 

#43 Material #31 Material #73 Material
Fig 25 – Impedance vs. Frequency and Temperature as a percentage of impedance at 25°C

Temperature  The permeability of ferrite materials varies as a function of both frequency and tem-
perature, and different mixes behave very differently (Fig 25).  Any RF current that produces a field
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in the ferrite will cause heating in the ferrite (and IR losses in the wire).  If the current is small
enough, the heat will be radiated and/or conducted as fast as it is produced. Larger currents, how-
ever, can cause temperature to increase.  At some high temperature (the Curie temperature), the
ferrite will temporarily lose its magnetic properties (until it cools). The Curie temperature is differ-
ent for each mix.  In the #43 and #73 materials, this will in turn cause permeability to fall, which
in turn allows more current, which produces more heating. In other words, thermal runaway can
occur if the current is large enough and the core is small enough. 

The #31 material has somewhat better temperature characteristics, especially on the lower HF
bands, where impedance actually increases with temperature up to about 100°C, but a rather low
Curie temperature.  Thermal runaway can still occur, but is a bit less likely.  In general, it is impor-
tant to use ferrites in a manner that 1) saturation is avoided, and 2) permeability does not signifi-
cantly drop with temperature.  See also Power Handling in  k9yc.com/2018Cookbook.pdf  

Total Field  A ferrite sees the instantaneous algebraic sum of the fields produced by the currents in
all the conductors that it surrounds (or that are wound through it).  If, for example, a ferrite sur -
rounds two conductors carrying currents that are equal and opposite, (for example, "hot" and "re-
turn" of a power circuit, loudspeaker line, or RF transmission line), the total field will  be zero.
When the currents are not equal and opposite, the ferrite sees the field resulting from that differ-
ence (that is, the common mode current).  This means that we can use relatively small ferrites to
suppress small common mode currents on paired cables that are carrying large differential currents
as long as the ferrite surrounds all the conductors.  We'll show applications of this later on. 

Chapter 4 – More Suppression Applications 
Mobile Operation  Common mode noise on the DC power line can be suppressed by winding
turns of both conductors around a ferrite core.  But: if DC return current divides between the dedi-
cated DC negative lead and the shield of the coax going to the antenna, the DC component of the
flux in the ferrite core will not be zero, and if it is large enough, the choking impedance is reduced.
Note that paired cable should always be used to power radio gear in a vehicle, and twisted pair is
best. Never use the vehicle chassis as a return for DC current.  
Ferrite chokes can also be used on only the positive DC conductor to provide differential mode
suppression.  In a modern vehicle, we have two very different problems.  When receiving, we are
concerned with noise from the vehicle's electronics causing interference to our radio, but the DC
current to the radio is small (typically 1-2A).  When transmitting, we may be concerned with our
radio causing interference to the car's electronics, and in this condition, our 100 W radio is draw-
ing 15-20A.  In Chapter 3, we learned that DC current can cause some reduction in the impedance
of a ferrite choke.  The obvious question is, "How much is the impedance reduced?" 

Quantifying  the  Reduction  in  Impedance  with  DC
Current  The Fair-Rite catalog provides data for the H-
field in Oersteds for 1 Ampere-Turn for many of their
products.  The applications section at the end of the
catalog includes families of curves showing how the
impedance  of  each  material  (mix)  is  reduced  as  a
function of field strength and frequency.  (Fig 26) 

A Design Example: Ten turns of the positive DC lead
for a mobile transceiver is wound around our stan-
dard #31 2.4" toroid, and the DC current for our mo-
bile transceiver is 1A on receive.  The catalog tells us
that H is 0.09 oe for 1 Ampere Turn, so H = 0.9 oe in
our 10-turn choke, which reduces impedance to 40%
of  the  measured value  at  10  MHz and 50% at  25
MHz.  If we were to re-plot the data with H as con-
stant and frequency on the horizontal axis, we could

Fig 26 – Reduction of Impedance with DC
Current (Bias) Fair-Rite #31 Mix

extrapolate impedance of about 32% at 5 MHz.  Applying these correction factors to the data of Fig
18a tells us that with 1A of bias, we could expect our 10 turn choke to look like about 1,100 Ω at 5



Understanding and Solving RF Interference Problems                                                                Page   18  

MHz, 1,600 Ω  at 10 MHz, and 2,000 Ω  at 20 MHz.  This is still a fairly reasonable choke, and
should provide reasonable  noise  suppression for  receiving.   When transmitting,  however,  this
choke will be severely saturated, reducing its impedance to about 250 ohms at 10 MHz.  Thus, if
we suspect transmitter RF coupling via the radio's power lead to the automotive electrical system,
we would use a larger ferrite part – one that has a much larger cross sectional area for flux, like the
"big clamp-on" of Fig 38. -

A Home Entertainment System  What if the problem is RFI to a home audio system from operation
on 80-10 meters?  The first thing we should do is look at the loudspeaker wiring, and if it is zip
cord, replace it with twisted pair.  If we still have interference, it's likely that common mode current
on one (or more) of the cables is exciting a pin 1 problem. We need to determine which frequen-
cies we're still hearing, decide which cables connected to that system are the best antennas at
those frequencies, and add chokes to those cables.  

Fig 27 – A simple home A/V system

In the system of Fig 27, the cable between the CD player and the receiver is probably quite short,
and if both units are plugged into the same outlet, the loop through the power system is likely to
be fairly short. Depending on how the system is set up, the video cable may be long or short.  On
the other hand, the coax coming from rooftop TV antenna of the CATV system (including the
downlead for the CATV system) may be fairly long. Both are likely to be pretty decent receiving an-
tennas.  In this system, I would first try 8-10 turns of the coax around a #31 toroid, because it
looks likely to be the most effective receiving antenna for my 3.5-30 MHz station. But don't rule
out shorter cables for the higher bands – the cable connecting the CD player was the culprit for
10M RFI in my own living room.  

CATV and Rooftop Antenna Downleads  Tom Rauch, W8JI, has outlined an excellent (and very sim-
ple) strategy for lightning protection that also puts an effective band-aid on pin 1 problems when
the interfering signal is on the HF bands and is being coupled by coax from a roof-mounted an-
tenna or CATV system.  Tom bonds the coax shield to the green wire of the power cord at the
power outlet for the entertainment system, then extends it to the A/V system. This causes the pri -
mary path to "ground" for shield current to bypass the home entertainment system and go straight
to the power system "ground."  The only problem with this approach is that you probably need to
build some sort of simple connector box to implement it.  

Interference At VHF  is always coupled either directly into unshielded equipment, or onto wiring
that is very close to the equipment.  Fair-Rite #43 or #31 materials are the best choice up to about
200 MHz.  Above 200 MHz, Fair-Rite #61 material or Steward HF material are the weapons of
choice.  The resonance of a single turn through a #43 or #31 core is typically about 150 MHz ; 2
turns brings the resonance below 90 MHz and double the impedance at the resonant peak; 3 turns
brings it below 60 MHz and double it again.  Thus, the 0.3" and 0.5" i.d. cores make very good
suppression chokes at 50 MHz (2-3 turns) and 144 MHz (single turn, multiple cores in series). 
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Use Your Talkie as An Injection Probe  to locate the susceptible components and wiring in a sys-
tem that is experiencing VHF interference.  A talkie that has a relatively sharp turn-on transient
when you key it works best (My Kenwood TH-F6A works well for this).  To use it, find a channel
where you won't cause interference near the frequency where your radio is getting into the equip-
ment, set the radio to transmit at full power, and key the PTT switch on and off continuously as
you move it around the susceptible equipment and its wiring.  Move the talkie's antenna at least a
wavelength or two along each cable connected to the susceptible equipment – it's normal to find
one or two hot spots at quarter and half wave increments along the cable.  If the interference is
very strong, reduce transmit power to "zero in" on the susceptible points.  When you find sensitive
wiring, add one or more ferrite chokes as close to the equipment as practical. Wiring between the
choke and the equipment will still function as an antenna.  And remember threshold effect – multi-
ple chokes may be required to hit and exceed the threshold.  

Most RF Susceptibility is Frequency Dependent  Equipment may be free of problems on some
bands but have serious problems on others. This is not surprising – we know that the unintentional
antennas that couple interference work better or worse depending on their length, orientation,
proximity to our transmitting antennas, and many other factors. The coupling paths into equipment
are often frequency-dependent, as are the paths inside the equipment that lead to the semiconduc-
tor junctions where detection takes place.  This means that your talkie may not be much help in
probing equipment for RFI problems on the HF bands. 

Equipment Shielding  If you've killed all the RF coming in on the cables and there's still a problem,
chances are it's poor shielding of the equipment, and for that, you'll need the bucket. Nearly every
powered loudspeaker I've ever seen has been a shielding and pin 1 nightmare. You can fix pin 1
with ferrites. Be sure to duck when you tell your neighbor you need to use the bucket. 

Advanced Troubleshooting – Dummies  Typical home entertainment systems have several blocks
in the signal chain and interconnections between them.  Several pieces of gear could be detecting
the RF, and pin 1 problems are the most common mechanism.  Pin 1 problems are excited by
shield current, so if we try to isolate a problem to a piece of gear by disconnecting it, we may get
false clues because we've interrupted the RF current path with the disconnection, not because
we've found the problematic equipment.  

Bill Whitlock developed an innovative solution to this dilemma, in the form a cable adapter he calls
a "dummy."  The dummy is very simple, and easy to build. It can take two forms. One is a "barrel"
adapter, with a male connector on one end and a female on the other. There is no connection be-
tween the male and the female, except for the shield contact. The female connector has a 10K re-
sistor between "hot" and "return," while the male has a low value resistor (270-470 ohms) between
hot and return. If the connector is unbalanced, return is the shell. In a balanced connector, it's the
other signal lead. If a barrel connector is not available, we can use the other practical form of a
dummy – a pair of male and female connectors with a cable connecting only their shields together
and the resistors within each connector. 

To use the dummy, insert it at various points in the signal chain and note whether the interference
is present or not.  Since there is no signal connection between the two ends of the connector, any
detected RF that you're hearing must be getting detected downstream of the dummy.  If you then
break the connection to the dummy and the hum, buzz, or RF goes away, you know that there is
hum, buzz, or RF shield current at the point where you broke the connection.  Dummies are espe-
cially useful in chasing RFI on the HF bands where the talkie doesn't help. 

RFI to Telephone Systems  Telephone wiring is an effective receiving antenna for the HF bands,
and most consumer telephone products have poor immunity.  Again, the path for antenna current
is through the phone and its power supply to "ground."  Phones often have both common mode
and differential mode susceptibility.  Ferrite chokes can reduce the common mode coupling, but
differential coupling calls for a capacitor with good RF characteristics across the telephone line.
This capacitor shouldn't have too high a value – if it does, it could degrade the audio response –
and the leads must be very short. 
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Remember that twisted pair wiring inher-
ently  rejects RF and noise  coupling,  and
the better the quality of the twisted pair,
the  better  the  rejection.   CAT5/6  cable
works very well for telephone wiring – it is
plentiful, inexpensive, easy to work with,
and has both a very high twist ratio and
very good bandwidth.  Replacing existing
telephone  wiring  with  twisted  pair  is  a
very good first step.  

Fig  28a  shows  measurements  of  some
common mode chokes that are known to
be effective in suppressing of RFI to tele-
phones  from HF  transmitters.  The  thing
that all of these filters have in common is Fig 28a-Common Mode Chokes for Telephone Lines
very high common mode impedance. Filters AM-1 and RF-1 are sold by John Browne, KI6KY http://
www.ky-filters.com/  Filters RF-2 and RF-2 BC are K-Com filters.  Pete Krieger, K8COM, the manu-
facturer of the K-Com filters, has closed his business and retired.  Filters YC-1 and YC-2 are my
own design, and will be most effective on 160M and 80M. YC-1 is 30 turns of the telephone cable
wound on one 2.4-inch #31 toroid. YC-2 is 22 turns wound on two toroids.  For 40M or 30M,
start with one 12-turn choke and add a second in series if needed.  The RFI-1 KY filter should be ef-
fective on the HF bands.

RFI to DSL Modems  DSL modems utilize the RF spectrum between about 25 kHz and 2MHz. Be-
gin by using CAT5 for as much as possible of the wiring that carries the DSL signal, especially
wiring that is exposed to interfering transmit antennas (including any radial system). Next, add YC-
1 or YC-2 filters to every cable connected to the DSL modem, including its power supply. In your
station, use a coaxial transmitting choke having at least 5,000 Ω choking impedance at the feed-
point of every transmitting antenna. (See k9yc.com/2018Cookbook/pdf for transmitting chokes.) 

Make  sure  that  your  tower  ground,  power  system  ground,  telephone  system ground,  CATV
ground, and shack ground all have a low impedance bond to a single point that is then bonded to
all  earth  electrodes.  See  http://k9yc.com/GroundingAndAudio.pdf and  N0AX’s  ARRL  book  on
Grounding and Bonding, to which I contributed. 

If interference persists, differential filtering may be required. Use a low-pass filter with the highest
practical cutoff frequency, taking into consideration the ham bands on which you will transmit. For
example, if you use 160M, design the filter for a cutoff around 1.5 MHz; if 80M or 40M is your
lowest band, use 2.5 MHz, and 5 MHz if 40M is the lowest band. Paired audio cables, including
telephone cables, are not 600 ohms – their characteristic impedance is 80-100 ohms, so the filter
should be designed for 90 ohm source and load impedances. A very nice filter design program,
SVCFilter, is included on the CDROM that accompanies the ARRL Handbook. It can also be down-
loaded from. http://www.tonnesoftware.com/svcfilter.html  Set it for a 90 ohm design impedance.
Carefully study the filter response to see if there's any variation in the time response in the pass-
band.  If there is, use a different filter configuration – more poles, a higher cutoff frequency, a dif-
ferent filter type – that minimizes the variation. 

Doorbells, Smoke Alarms, etc.    Coupling of RF into these products is often differential mode.
When it is, a good RF capacitor across the terminals is usually an effective fix.  0.1 – 0.47 µF will
usually do the job. Be sure that the voltage rating of the capacitor is sufficient – study product doc-
umentation to see what voltages are used.  Most products like this use 12-24 volts for control.  

Consider replacing the wiring for these systems with good twisted pair cable – if you can get at the
wiring.  Shielding is not usually important, but twisting is.  In addition, foil/drain cable shields can
actually  cause RF interference in twisted pair cables – see the tutorials about shield-current-in-
duced noise (SCIN) at  http://k9yc.com/publish.htm 

Suppression "At the End of the Line"  Some devices that receive interference have only one set of

http://k9yc.com/GroundingAndAudio.pdf
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wires connected to them, counting the power supply, so there is no path for RF current through
the device.  An example might be a smoke detector that has built-in electronics but no power sup-
ply – instead, it obtains its power from the same cable that connects the sensor to a main unit.
When the device is at the end of the line, there is no path for common mode current to flow
through the device, so the interference is almost certain to be coupled in the differential mode
(that is, between the terminals of the signal wiring or the power wiring).  "End of the line" interfer-
ence cannot be suppressed with a choke – there is no RF current to suppress. 

Most 'end of the line" problems are solved by a capacitor across the line to short out the interfer-
ence. The capacitor must not be so large that it weakens or distorts the waveform of the desired
signal, but large enough to reduce the strength of the RF signal.  In some cases, a low pass filter
may be required.  

More than One Coupling Mechanism  Most cases of interference are coupled by more than one
mechanism.  The total interference will be the algebraic sum (that is, considering both magnitude
and phase) of all of the interference mechanisms that are at play in that particular system. Usually,
but not always, one will be dominant, and when it is eliminated, interference from the others may
still be heard.  We may, for example, kill the common mode current with a choke and reduce the
interference, but there may still be some differential mode interference present that needs a capac-
itor across the signal line to kill it.  There may be more than one common mode current path, as in
the examples of the Ethernet equipment and the home entertainment system. 

Twisted Pair Cable  I can't say it enough – zip cord is terrible for RFI, and twisted pair solves many
problems.  If you have RFI and the cable is anything but coax or a good twisted pair, try to replace
the cable.  This is true for virtually all systems – anything from the sensor for a smoke detector to
telephone wiring to big loudspeaker cables.  Shielded cable rarely solves RFI problems, partly be-
cause to do anything useful cable shielding must continuous with equipment shielding, and lots of
equipment to which you would like to connect it is unshielded! 

Rolling Your Own Twisted Pair  Start with lengths of THHN or NM (Romex) from the “big box”
store. If Romex, strip the outer jacket to expose the conductors. Lock one end of the White and
Black conductors in vise clamped to some fixed object and other end in a power drill, and stretch
them out in a straight line. Pulling the conductors tight and keeping them under tension, operate
the drill until the pair is tightly twisted over its length. Twisting won’t be constant over the entire
length, but that won’t matter much. Leave the pair in the drill and vise overnight so that the pair
“remembers” it’s twist. There will be some “untwisting,” but you’ll still end up with nice twisted
pair. The same technique can be used for twisted triplet for power wiring (that is, phase, neutral,
and ground).  

Cylindrical vs. Snap-On Cores  As you can see from the data (Appendix 1), cylindrical cores per-
form much better in the lower HF spectrum than equivalent Snap-On cores, but only about 10%
better at VHF.  The Snap-On cores are also nearly double the cost. Their principle advantage is
their ease of use – you can fit them onto a lot more cables without taking the connector off.  

Fair-Rite Data for 1-3 Turns Since I first published my work in 2006, Fair-Rite has updated their on-
line catalog with impedance data for 1, 2, and 3 turns through many of their suppression compo-
nents. To access it, click on a part number to see a detailed data sheet, then scroll down to the
bottom and click on Impedance Curve. 

Estimating the Performance of Multi-Turn Chokes Without Measured Data Unfortunately, other
manufacturers don't publish much data for multi-turn chokes, and even most Fair-Rite data only
goes up to three turns. Beyond that, the measured data that I have published is nearly the only
publicly available data on multi-turn ferrite chokes!  You can, however, begin with published data
and use our data as the basis for "guestimating" how another part will behave with multiple turns. 
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Winding  Guidelines It  is  important  to  wind
turns through the ferrite core in sequence. Out-
of-sequence turns cancel,  raising the resonant
frequency and reducing the choking impedance.
Fig  28b and 28c  illustrate  the  concept.  These
chokes  might  be  used  on  the  cables  of  the
home entertainment system (Fig 27) or a com-
puter  monitor.  The  5-turn  choke  (Fig  28b)  is
most effective on the higher HF bands, and the
6-turn  choke  (Fig  28c)  is  even  better  (larger
core, another turn). Adding two more turns Fig 28b – ¾” i.d. Fig 28c – 1-in i.d.

through the larger core moves the resonance down for improved suppression on the lower HF
bands at the expense of the higher ones. (The number of turns is defined as the number of times
the cable passes through the core.) Always use a cable-tie around “snap-on” cores so that the two
pieces fir tightly together – if the contact is poor, the choke won’t work at all! 

Reciprocity Because chokes work by blocking antenna action on wiring, the same chokes that sup-
press RFI to equipment will also prevent those cables from radiating noise from that equipment to
our antennas.  

Suppress Differential Mode Interference in FM and TV Receiving Antennas with traditional high
pass, low pass, bandpass, and bandstop filters.  Tin Lee Electronics, near Toronto, makes a broad
selection of filters.  www.tinlee.com  Install the filter upstream of the first electronic device that is
being overloaded by the interference. In Chicago, I used a bandpass filter on the FM-only antenna
and a high pass filter on the TV antenna (in addition to common mode chokes on both antennas).
Also, remember that after the DTV conversion, there are almost no TV stations operating below
Channel 7 (174 MHz), and most are on UHF channels, so a high pass filter that cuts off above 2M
should be sufficient. Study http://www.fcc.gov/dtv/markets/ to learn the actual RF frequencies used
by stations in your area. 

Chapter 5 – Suppressing Interference To Your Ham Station
In addition to the weak signals of the DX we're trying to work, our ham antennas are bombarded
with RF trash from a plethora of electronic devices, electrical appliances, and other equipment,
both within our own homes, and in the surrounding neighborhood.  The noise may be conducted
on the power line, and it may be radiated both by power wiring and by other antennas connected
to the noise source.  Common noise sources include computers and computer peripherals, com-
puter network hardware, power supplies for equipment, battery chargers, AC-AC converters for
low voltage lighting, electric fences, and motors.  

Power Line Filters  Since the power line is often both a conductor and a radiator of noise, we need
to know how to take it out of the picture effectively.  Although noise sources may couple both
common mode and differential mode signals to the power line, it is primarily the common mode
component that causes RFI. 

Unfortunately, what EMC regulations for power wiring call common mode is very different from
what RF engineers call common mode, and what we call common mode is what causes RFI. Those
regulations call common mode the voltage between neutral and the equipment ground (the green
wire). We call it the algebraic sum of the current flowing on all conductors, and it is that current
that radiates the RF noise. In effect, the cable is acting as a transmitting antenna. 

Most common mode noise on 120/240V power wiring is caused by a Pin One-like problem with
the green wire where it connects to equipment.  It SHOULD go straight to the shielding enclosure,
not to the circuit board. Often it does not. Commercial power line filters are effective only if either
built into the noisy product (Fig 29b), with the power system green wire making direct contact
with the chassis, or if external to the product (Fig 29a) with “zero-length” leads and the green wire
making direct contact with the chassis immediately adjacent to the other power conductors (that
is, phase (hot) and neutral. 

http://www.tinlee.com/
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Commercial AC power line filters (Fig 29) are generally a waste of money, because they provide
only differential mode filtering. Common mode current, nearly all of which is on the ground con-
ductor (the green wire), goes right past the filter – it goes to the filter chassis at input and output.
The filters of Fig 29b have a built-in standard IEC power connector, and it is primarily the bonding
of the green wire to the chassis (by mounting the filters to the chassis) that solves RFI problems,
not the components inside the filter!

Fig 29a Fig 29b
Commercial Line Filters

Fig 30a shows a pair of common mode chokes designed to kill common mode noise from the por-
table generator we use in the field. The ferrite cores are #31 material and the cable is #12 Romex.
There are two chokes in series, with 7 turns wound around one core and 7 turns around two
cores.   The single core choke is optimized for the higher HF bands and the two-core choke for 80-
40M. The “pancake” mounted to the side of the generator is W6GJB’s conversion to propane. 

Fig 30a – A Common Mode Power Line Choke

Fig 30b – A Home-Brew Multi-Outlet Box

The multi-outlet box of Fig 30b allows the connection of multiple pieces of equipment. It was con-
structed from multiple “gangable” boxes, like those shown above or alongside the completed unit.
If needed, one or more common mode chokes can be wound on the power cord feeding the box.  
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Low Voltage Lighting is a major source of RF noise, because nearly all commercial products use an
SMPS to convert the AC line to the desired low voltage. As with other SMPS noise, it’s best to re-
place them with a linear supply. That can be easier said than done, because a linear supply or
transformer is usually too large to fit in standard electrical enclosures. A few suitable supplies are
available from Jameco, but they are fairly large, and it’s likely they will be discontinued when exist-
ing stock is gone.

One possible solution is to reduce the current required by replacing existing incandescent lamps
with  custom  LED  fixtures  and  lamps  like  those  sold  by  Wired  Communications  
(  www.wiredco.com ), allowing a smaller supply to be used.  They sell replacement lamps that
plug into existing low-voltage lamp sockets, others that plug into 120V sockets, strips that can be
mounted to the underside of cabinets with circuitry that allows them to be powered by 12-24V AC

Fig 31a – Some Quiet Low Voltage Lighting Fixtures

or DC, and even the same circuitry in long flexible
strips  on  a  spool.  I’ve  used  their  replacement
lamps to kill  noise from the SMPS that used to
power lighting in a bathroom, the fixed strips to
light my shack; W6GJB used the strips on a spool
to  light  his  contesting  trailer,  and  for  overhead
lighting fixtures at  the vacation cabin  his  family
shares.  This company also sells SMPS to power
their units, but I don’t recommend them. (I have
no connection to them, only a happy customer). 

Fig  31b  shows  common  mode  chokes  wound
with #18 bell wire that can be used on noisy low
voltage circuits. The wire usually comes twisted,
but  should  be  un-twisted  before  winding  the
chokes. The cores are Fair-Rite #75 material, part
number 5975001401. 7 turns on four cores is rec-
ommended for 160-30M.  Fig 31b – Chokes For Low Voltage Wiring

Wall Wart Power Supplies and Battery Chargers  In the old days, these were usually simple trans-
former-rectifier-capacitor power supplies, usually un-regulated. With the emphasis on power sav-
ing resulting from minimizing climate change has come the mandate for the use of Switch-Mode
Power Supplies (SMPS). They take the rectified DC, chop it to produce a square wave in the range
of 10-20 kHz, then rectify and filter that to produce the DC output. The result is greater efficiency,
but these products are almost all very nasty noise sources. The best solution is to replace them
with linear power supplies. I collect all the linear wall warts I can find at hamfests and second hand
stores, break the DC output cable, break the output cable of the noisy supply,  and splice the
power connector for the product to the output of the linear power supply.  

http://www.wiredco.com/
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To make this work, we must carefully match the DC output of the
linear supply under load with that needed by the product that it
powers. To facilitate this, I install Red/Black Power Pole connectors
on both the linear power supply and the wire from the equipment
connector. I can then use a meter like the popular WattsUp to ver-
ify that the voltage under load is right for the equipment. (Fig 32)

Fig 32

Most LED lamps designed to run on 120VAC have an SMPS built into their base; thanks to the re -
duced current requirement and the very short leads to the LEDs, those that do decent power line
filtering are relatively quiet, while others can be noisy. Careful lab work by NA6O has shown GE
small floods (Lowes) and FEIT (Home Depot) to be quiet, but an Elite lamp to be “the devil incar-
nate, even though it just barely passed FCC Part 15 when tested in the ARRL Lab!”

Fig 33 – 120V AC Replacement LED Lamps 

We often don’t hear a noisy product because it’s buried by all the other noise hitting our antennas!
I almost never trust statements that a given product is quiet unless I know that isn’t happening!
Gary’s work was much different – he carefully measured common mode current in the lab, and lis-
tened on a portable radio near the lamps and their wiring. He had to be within about 3 ft to hear
the good ones.  

Try Killing Power to Your House  Many RFI specialists, including Mike Martin, K3RFI, recommend
this as a first step in finding the sources of RF noise that you're hearing in your ham station.  Al -
ways start by cleaning up your own home. In the process, you'll learn a lot of things to look for if
you have the need (and the opportunity) to eliminate noise in the homes of your neighbors.  It's
pretty easy to run a ham receiver from a 12V battery – indeed, all the radio gear in my ham shack
(with the exception of the power amps) runs from a big 13.4V LiPO4 battery that is float charged
by a regulated power supply.  You'll be surprised by how much noise goes away when you kill the
power to your own home.  Then, while listening to your receiver, turn one circuit at a time back on
at a time and track down the noise sources on that circuit using a process of elimination. When
doing this, be sure to turn off all UPS and all computers running on a UPS – both the UPS and
computer gear can be noise sources.  

A Better UPS  Most UPS units run their battery charger full time and full strength. This does two
bad things – the charger generates RF noise, and it overcharges the internal batteries, so they fail
within a year or two. The Cyberpower CP1500PFCLCD (but not the cheaper CP1500AVRLCD) is
different – the battery charger runs only when the battery needs charging (when power has been
restored after a failure), so the unit doesn’t generate noise and the batteries last for many years. 

Chapter 6 – Baluns 
The word “balun” is a bastard word – it is used to describe nearly a dozen very different things.
Things called "baluns" are widely used in ham stations, but few hams understand how they work or
what their real function is. That word “balun” is the problem – it tells us nothing about what the
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device actually is or how it works. 

In an ideal radio system, the transmission line for our antenna would act as if the transmitter (or
receiver) was physically located at the feedpoint of the antenna, with nothing in between.  There
would be no loss, and no interaction of the feedline with the antenna.  We've gotten to this point
with microwave systems – indeed, all of the RF electronics for many of these systems can clamp
onto the back of a dish and drive it directly.  We're not there with HF (or even VHF) systems
though, and not likely to get there, thanks to the power levels, wavelengths, and antenna types
that are practical.  So in the real world, we're stuck with transmission lines for most of our anten-
nas.  The primary function of most baluns, at least in our ham stations, is to minimize the interac-
tion of our antennas with the transmission lines that connect them to our radios.   So let's dive in
and learn a bit more about how antennas, transmission lines, and baluns work.  

Balance Let’s begin by defining circuit balance. A balanced system is not defined by the equality of
current or voltage on the two conductors. Rather, a balanced circuit is one in which the impedances
of the two conductors to the reference plane are equal in both magnitude and phase. A balanced
circuit functions as a Wheatstone bridge, rejecting noise by virtue of the balance of the impedances
within that system. [There is an excellent analysis of this by Whitlock, in the Journal of the Audio En-
gineering Society ( JAES, June 1995), available in most university engineering libraries, and AES.org 
Antennas and Balance  We like to think of a center-fed dipole as a balanced antenna, and in an
ideal world it would be.  To achieve that, we would need to suspend it over perfectly flat and uni-
formly conducting earth, between electrically symmetrical support structures.  There could be no
buildings below it, no wiring, no conductive objects around it that were not perfectly symmetrical
with the antenna, and the feedline would need to be perfectly perpendicular to the antenna all the
way to the transmitter.  

As hams, few of us are able to install anything approaching a balanced antenna, especially for the
lower HF bands.  We must suspend them from metal towers, trees, or the side of building.  Often
the ground beneath them is not flat, soil conductivity is non-uniform, there are power lines, tele-
phone lines, and there is wiring in nearby buildings. The antenna has capacitive and inductive cou-
pling to all conductive objects in its near field. Rarely will that coupling be symmetrical, and rarely
will it be possible to quantify it. In short, even the best of our antennas are a compromise.  

An example of a ham antenna that might have met that criteria of a balanced antenna was a dipole
I was able to hang between two identical towers on top of the EE building at the University of
Cincinnati when I was a student and trustee of W8YX in the early 60's. I used the word "might" be-
cause although the towers were mounted symmetrically on the building, one held a large beam.
There goes the balance!  

Even with ideal ladder line feeding our real world "sort of" balanced antenna, the antenna imbal-
ances cause the currents in the two halves of the antenna to be unbalanced (that is, unequal), so
the current on two sides of our balanced feedline are not equal.  The imbalance between the two
currents is a common mode current, and it causes radiation from the feedline!  And because all an-
tennas work in reverse, any current flowing on the feedline couples unequally to the two sides of
the antenna.  The difference between those currents is sent back down the feedline as a differential
signal to our receiver.  That feedline current could be noise from our neighbor's battery charger, or
a station coming from a direction we thought our beam antenna was rejecting. 

Coaxial Feedlines and Balance  A coaxial feedline can add to the imbalance that already exists in
our real world antenna.  Because it is the most obvious of the imbalances (although not necessarily
the dominant one), it is the one that we pay the most attention to.  We do this by adding a lump at
the feedpoint that the guy at the ham radio store tells us is a balun.  It's all nicely glued into a
weatherproof housing that we can't take apart without destroying it, and the data sheet tells us
nothing more than how wonderful it is.  So now we're back where we started, asking "What is a
balun?"  And while we're at it, perhaps we should ask how it works.  

Types of Baluns  There are (at least) three fundamental types of baluns used in radio, and several
variations within each type. The three types are very different electrically, and they interact differ-
ently with the imbalances of both the feedline and the antenna.  
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Transmission Line Balun  A balun can also take the form
of a half-wavelength of transmission line (Fig 34).  In
the most common configuration, the center conductor
of a 50 ohm line is connected directly to one side of a
100 ohm antenna and also to a half-wavelength of the
same line, which in turn drives the other half of the an-
tenna.  The two sides of the antenna are thus driven in
parallel, but 180 degrees out of phase with each other
(but  only at  the frequency for  which the transformer
(the extra length of line) is one-half wavelength.  As we
move away from that frequency, the phase shift will be
a bit more or a bit less. The antenna still works, but the
balance degrades a bit. Fig 34 – A Half-Wave Balun

Voltage Baluns  A "voltage" balun is essentially a transformer, most often with a primary and one or
more secondary windings on a ferrite core.  The Ruthroff baluns described by the late Jerry Sevick,
W2FMI, and Doug DeMaw, W1FB, and the W2AU balun sold by Unadilla, are transformers (that
is, "voltage" baluns) that use ferrites as a core to carry the flux between windings.  

Current Baluns  First published by Guanella and pioneered by Sevick, Joe Riesert (W1JR), and Walt
Maxwell (W2DU), current baluns are actually common mode chokes applied to a feedline.  Cur-
rent baluns see only the common mode field. When wound with coax, this is true because all of
the magnetic field associated with common mode current is outside the line, while all of the field
associated with the transport of power from the transmitter to the antenna is  inside the coax.
When wound with parallel wires, the core sees the sum of flux from currents of opposite polarity;
the differential components cancel, leaving only the common mode flux (due to the imbalance in
the system).  Common mode chokes work by adding a high impedance in series with the common
mode impedance of the line, thus reducing the common mode current to a very small value – if no
common mode current is allowed to flow on the transmission line, the current on the left half of
the antenna must be equal to the current on the right half of the antenna, simply because there is
no other path for current.  There are three fundamental types of current baluns.  

 Solenoid Balun    The coaxial line is wound into a coil at the antenna.  The choking imped-
ance is the inductance of the coil.  Reisert describes several designs for solenoid baluns,
and the ARRL Handbook includes several designs for solenoid baluns. As we’ll see later on,
this sort of choke can be a very bad performer.  

 Inductive Ferrite Choke Balun    The line is wound around a toroidal ferrite core that has low
loss at the frequency where the balun is used, so all (or nearly all) of the impedance is in-
ductive.  The line may be coax or it may be bifilar (parallel wires).  Reisert's toroidal baluns
are wound on a material like #61 that has low losses at HF (Fig 12, Fig 35).  [Reisert also
introduced the concept of a crossover winding style, whereby half of the choke was wound
in one direction around the toroid, then crossed 180 degrees to the other side of the toroid
and wound in the opposing direction. Sevick noted that he was unable to measure any ef-
fect of this technique. My measurements confirm Sevick's results.]

 Lossy  Ferrite  Choke  Balun    Maxwell  introduced  the  concept  of  passing  a  coaxial  line
through a string of lossy ferrite cores to form a common mode choke, a design which has
come to be known as the W2DU balun. Maxwell investigated chokes with 50, 100, and
300 Fair-Rite 2673002402 beads, 0.19" long, large enough to fit over RG-303 coax, and de-
pending on component tolerances, may fit RG142 and RG400 coax (Fig 35). When Maxwell
published his  work,  baluns were thought  of  only as  preventing pattern  distortion,  and
most, if not all, W2DU baluns use only 50 beads. W8JI has observed that these can’t han-
dle high power, and that Maxwell  probably didn’t notice it  because he didn’t run high
power. Equally important, until W1HIS self-published his work on chokes, hams didn’t re-
alize their value to kill noise, and I noted the importance of having a high value of resistive
impedance, both for noise and greater power handling. Maxwell's 300-bead design (Fig 36)
would provide about 4KΩ on 80M and more than 5KΩ  from 40-10M. It would be 5 ft
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long, weigh about 13oz, and cost about $45 to build, including coax and connectors. The
red curve is Rs, the magenta curve is Xs, and the black curve is Z.   

Maxwell’s work was done at a time when hams were limited to 1kW DC input power, and trans-
mitter efficiency generally limited output power to about 700W.  The choking impedance of even
his largest 300-bead (W2DU) balun was probably far too low to handle that power level, and W8JI
has observed that W2DU baluns couldn’t handle high power.

Others have proposed variations of the W2DU balun without realizing the importance of resis-
tance. Fig 37 is computed data for straight uncoiled "string of bead" choke baluns using 1.125" long
#31 beads. As with all bead baluns, the impedance of a straight balun is approximately equal to
the impedance of one bead multiplied by the number of beads in the string. The W0IYH balun
used 100 #43 beads, 0.562" long, 0.25" i.d. The resonance of these beads (and thus the balun) is
around 150 MHz, so these baluns are strongly inductive on the HF bands! K3LR has measured
them. His results suggest considerable stray capacitance, which in turn suggests either measure-
ment error (stray capacitance in a test  setup is a common measurement error and difficult to
avoid) or that his string of beads may be coiled (increasing stray C, lowering FRES, and improving
performance). #31 beads provide much more Rs than #43, but are still strongly inductive at HF. 

Advantages of Current Baluns     (Common Mode Chokes)   Maxwell seems to have been the first to
realize that with a common mode choke, loss in the ferrite is not a bad thing if you have enough of
it!  (We'll discuss this in detail a little later). Maxwell, and Roy Lewallen (W7EL) showed that a cur-
rent balun has some important advantages over a voltage balun, and that the advantages are so
great that only current baluns should be used in most ham radio applications. [Maxwell,"Some As-
pects of the Balun Problem," QST March 1983,] [Roy Lewallen, W7EL, "Baluns: What They Do and
How They Do It," http://www.eznec.com/Amateur/Articles/Baluns.pdf ,The ARRL Antenna Compen-
dium Vol 1]  Let's look at those advantages. 

 Because the core sees only the common mode flux, a much smaller ferrite core is needed
to handle high power without saturation.  

 If the common mode impedance is high enough, common mode current can be forced to
near zero, which in turn forces near ideal balance. 

Fig 35 – RS for chokes on 2.4" o.d. Fair-Rite #61 Fig 36 – A 300-bead W2DU Balun 
(Computed From Fair-Rite Data)

http://www.eznec.com/Amateur/Articles/Baluns.pdf
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Fig 37 – Equivalent Series Resistance of #31 Bead Baluns (Computed from Fair-Rite Data)

Disadvantages of "String of Bead" Baluns (Common Mode Chokes)  The common mode (choking)
impedance is the impedance of one bead multiplied by the number of beads.  As a result, 

 1) We are stuck with the resonant frequency of the bead used in the string. If the bead is
inductive, the choke will be inductive, and nearly all commonly available beads are induc-
tive in the HF spectrum. The exception is Fair-Rite #73 (see Fig 36), and the largest cable
that comfortable fits through the largest #73 bead is RG303 (50 ohms) and RG179 (75
ohms) (and possibly RG142 and RG400). 

 2) As Figs 36 and 37 show, it takes a very large number of beads to achieve even modest
choking impedance.  The usual compromise is using too few beads, which results in insuf-
ficient choking impedance. The resulting common mode current can overheat the balun,
often to the point of failure, and couple RX noise. 

 Even Maxwell’s largest balun with 300 #73 beads is severely underrated for power han-
dling for more than about 400W on the lower HF bands and 600W on the higher bands.  

 3) This is a very inefficient use of the ferrite material. 

Disadvantages  of  Voltage  (Transformer)  Baluns  The  ferrite  core  of  a  transformer  balun  (the
Ruthroff "voltage balun") sees all of the transmitted power, so it is easily overheated and saturated
by high power.  Because voltage baluns are carrying the entire transmitted signal, they should not
be allowed to saturate, because that would create both harmonic distortion and intermodulation
distortion.  You will be quite unpopular on the ham bands if you do either, and you will be quite
likely to do so if you run high power through a voltage balun unless it is a very large one.  This
leads to the first two big negatives for voltage baluns – they must be large to handle power, and
they can generate both harmonics and splatter if they are overloaded.  

Related to these negatives are two important design constraints – the cores of voltage baluns must
have relatively low loss, and they need fairly high permeability to support the flux needed to carry
the power.  This limits them to a material like Fair-Rite #61 or #67. And yet another negative for
voltage baluns – any loss component in the ferrite core reduces the quality of the balance that the
balun is providing, and real ferrites have losses. And if that isn’t enough, when they are bifilar
wound to increase coupling, capacitance between windings degrades isolation of feedline from an-
tenna. The result is that voltage baluns don't do a very good job of providing balance either!  
When used in a transformer (voltage) balun, or in a choke wound with parallel wire line, a core
with high losses (#31, #43, #73, #77, #78) will convert much of the transmitter power into heat.
The result are 1) high losses (that is, several dB of the transmitter output is lost in the balun); 2)
balun performance may degrade due to heating;  3) the balun may overheat; 4) the balun (or the
line) may fail due to overheating (that is, the line may melt and either deform or short, the ferrite
may crack).  

Although voltage baluns are still sold and advocated in articles about ham building projects by au-
thors who don't know any better, most authorities believe that they cause more problems than
they solve, and should be avoided when there are other good options.  This author strongly con-
curs. There is a far better way to transform impedances using ferrite cores.  See Impedance Trans-
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formation with Current Chokes later in this chapter. 

Lossy Toroidal Coaxial Chokes  Winding multiple turns of a coaxial feedline through one or more
lossy toroidal cores is simply another (and usually better) way to construct a W2DU balun.  It is
better because 1)  it makes much more efficient use of the ferrite than a string of beads; and be-
cause 2) it is easy to achieve much higher choking impedances in a very practical form and at rea-
sonable cost than with any other form of balun; and because 3) a high level of performance can be
obtained over a wide frequency range with only one or two parts.  Conceptually, lossy toroidal
coaxial chokes are no different from W2DU's original design, they have all of the advantages of
other current baluns, and they can provide much better performance over greater bandwidth. 

Disadvantages of the Reisert Toroidal Balun  Because the design uses a low loss (high Q) material
(Fair-Rite #61), the choke provides only inductance on the HF bands. This works if the feedline is
shorter than a quarter-wave at the operating frequency (because the feedline is inductive in the
common mode circuit), but is ineffective when the electrical length of the feedline causes it to be
capacitive. Because common mode current is flowing on the outside of the shield, the electrical
length is for a wire having the diameter of the coax shield and insulation corresponding to the
outer jacket (VF near 0.98). 

Advantages and Disadvantages of the Solenoid Balun  The principle advantage of solenoid chokes
is their simplicity.  Losses and dissipation are inconsequential. Solenoid baluns (coiled up coax)
must be relatively large if they are to provide even relatively moderately high choking impedance
(typically 500 – 1,500 ohms), and because they provide only inductance, they are only useful when
the feedline is not capacitive (shorter than a quarter wave, VF near 0.98). And like any coil, capaci -
tance between windings causes it to resonate at some high frequency, also rendering it useless. 

Using Common Mode Chokes As Baluns  Maxwell taught us to use a common mode choke at the
feedpoint of an antenna to minimize interaction of the feedline with the antenna – that is, to de-
couple the feedline from the antenna.  This choke ("current balun") works by inserting a high com-
mon mode impedance in series with the feedline, ideally as close to the feedpoint as possible.  The
obvious question is, how much impedance is enough?  There are (at least) four criteria.

Dissipation  The choking impedance must be high enough to reduce common mode current to
the level such that the choke cannot overheat and damage the core or the coax.  

Pattern Distortion  We would like the choking impedance to be high enough so that feedline
current does not distort the pattern of the antenna.  

Noise Coupling  The choking impedance should be high enough that any noise current that may
be received on the feedline behaving as an antenna cannot flow onto the intentional antenna.  

RFI Prevention  The choking impedance should be high enough that the feedline does not radi-
ate transmitter current near susceptible equipment in your home (or a neighbor's).  

How Much is Enough?  Traditionally, "choke baluns" have been built around the assumption that a
choking impedance on the order of 500 Ω was enough.  Maxwell considered 1,000 Ω sufficient to
eliminate pattern distortion, and considered his bead balun design sufficient to handle maximum
legal power, although others have debated that assertion.  In a self-published applications note,
Chuck Counselman, W1HIS, suggested that a choking impedance of 5,000 Ω as a more suitable
target value to optimize noise suppression. My work and experience prove him correct. 

Choking Impedance and Noise Suppression  Once we've satisfied the dissipation criteria, the abil-
ity of the common mode choke to suppress noise comes into play.  The mechanism is simple. Any
RF noise around your antenna will induce RF current on your feedline (and onto your antenna).
When current flows on your antenna, you hear it in the receiver. The choke suppresses noise by
adding a high resistance to common mode current between the feedline and your antenna, which
in turn prevents it from showing up at the feedpoint and being sent back down the line to your re-
ceiver.  For good noise suppression, the series choking impedance should be as high as possible.
Again, 5,000 ohms is a good target value, and more could be better. 

How Much Noise Reduction?  Noise coupled from the feedline to the antenna will be reduced by
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20 log (I2/I1)dB, where I2 and I1 are the common mode noise current with and without the choke.
Once you've added enough choking impedance that the common mode current is dominated by
that impedance, the noise reduction is 20 log (Z1/Z2)dB, where Z2 and Z1 are the common mode
impedance with and without the choke. In other words, you get 6 dB of noise reduction for each
halving of the current or doubling of the series impedance.  This simple math explains why a 5K
ohm choke is better than a 1K ohm choke!  

Choking Impedance and RFI Prevention  Again, a higher value of choking impedance is better. If
the choking impedance is high enough to satisfy dissipation requirements, it's likely to be enough
to prevent RFI in your home.  

Power Handling  is directly related to the value of Rs that the choke provides at the operating fre-
quency. Power handling is addressed in k9yc.com/2018Cookbook.pdf 

When should you use a "string of beads" choke, and when is a toroid choke better?  The answer
lies in factors like size, cost, and weight needed to achieve sufficient choking resistance.  Both will
work quite well – if enough core material and turns are used to provide enough choking imped-
ance. But thanks to the size of largest #73 bead made to build a W2DU choke, you’re limited to
RG303 (50 ohms) or RG179 (75 ohms). And as noted earlier, even the 300-bead W2DU choke
probably can’t handle more than about 600W.  A multi-turn choke on the right toroid is a far more
efficient use of ferrite material, because impedance is multiplied by the square of the turns ratio, so
a multi-turn toroidal choke is the clear winner below 30MHz. 

When are "string of beads" chokes OK?  Many rules are made to be broken. About ten years ago,
K3LR asked me if it was OK to form a W0IYH string of beads using clamp-ons on his 10M anten-
nas, where the feedlines had been carefully phased for stacking, and modifying their length to add
multi-turn chokes wasn't practical. Fig 37 shows that the answer is yes – if enough beads are used
to provide sufficient resistance that even if the feedline resonates with their inductance, the resis-
tance still  kills the common mode current.  Fig 37 also shows that a relatively small "string of
beads" can be quite effective on 6M and 2M. Fig 37 is computed for beads that are 0.562 inches
long. Roughly half that number of 1.125-inch beads will provide equivalent performance. 

Impedance Transformation with Common Mode
Chokes  Very good impedance transformation can
be  achieved  by  wiring  good  common  mode
chokes in series-parallel configurations. Examples
are the high power "baluns" sold by DX Engineer-
ing to match 200 ohm, 300 ohm, and 450 ohm
line to 50 ohm coax.  The chokes are wired in par-
allel on the low impedance side and in series on
the high impedance side.  Fig 39 shows a 4:1 ver-
sion of this design.  The primary design consider-
ations are that 1) the common mode  impedance
of each  choke must be large enough that Fig 38 –Choke (Guanella) Transformer 
they do not short each other out or dissipate significant power; and 2) the common mode imped-
ances of the chokes must be reasonably matched to each other.  Two such chokes in series/parallel
provides a 4:1 impedance transformation, three chokes provides a 9:1 transformation. The high
power baluns manufactured by DX Engineering are Guanella common mode choke baluns.  

How I Measured Chokes in 2007-2010 Fig 39a shows the test setup, and Fig 39b shows the equiv-
alent circuit.  Since the HP generator is designed to work into a 50 ohm termination and calibrated
for that load, a 50 ohm "through" termination was added at the output of the generator. Without
this termination, the generator voltage would be about 6 dB greater. (and the electronic attenuator
might not work as well).  The unknown impedance can then be computed from the voltage divider
equation. For all values of unknown Z greater than 500 Ω, the error is less than 10%, and less than
5% for unknowns greater than 1,000 Ω. I measured the stray capacitance of this fixture as 0.4 pF at
the terminals connected to the unknown impedance. 
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Fig 39a – Measuring Coaxial Chokes

Fig 39b – Equivalent circuit
This was a very useful measurement setup, and
could  achieve  reasonable  accuracy  for  rather
high values of  impedance.   K6MHE sent  me a
13-turn  choke  he  had  wound  on  three  #61
cores.  I  was  able  to  measure  an  impedance
greater  than  150K  ohms  at  resonance  (15.5
MHz).  The spectrum analyzer could be replaced

by an RF voltmeter or scope, in parallel with a suitable load resistor.

How Much Stray Capacitance Was There?  This is important, because it moves the resonance, and
thus the frequency range over which the choke is effective, down quite a lot. To answer this ques-
tion, I wound a lot of coax chokes (in the winding style of Fig 36) and measured them. Accurately
measuring impedances in the range of 1K – 10K at HF is not easy, especially with Network Analyz-
ers and Antenna Analyzers that make reflection-based measurements.  Because the unknown im-
pedances being measured are so far from the center of Smith Chart, very small values of stray re-
actance cause very large measurement errors. It is far more accurate to measure the unknown im-
pedance (the choke) as the series arm of a voltage divider.  I didn't have access to a suitable Vector
Network Analyzer (VNA), but I did own an HP 8657A RF generator and an HP 8590D Spectrum
Analyzer. The 8590D includes a calibrated voltmeter that reads the voltage across a calibrated 50
ohm termination.  Doing some math gives me the magnitude of the impedance. And since we al-
ready know that the choke is essentially a parallel resonant circuit, we can learn most of what we
need to know about it by studying its Q and the values of Z far above and below resonance.

More Measurements:  Fig 40 displays data obtained in this manner for RG8 chokes wound on
stacks of #31 3.4" o.d. cores, in the style of Fig 36.  Note that the resonant frequency falls both
with more turns and with more cores in the stack.  This is to be expected – in addition to the resis-
tive impedance we are looking for, each core also adds inductance and capacitance, both of which
lower the resonant frequency.  Our goal is 5K ohms over a broad frequency range (at least three
ham bands). Fig 40 shows very good options for 1.8-14 MHz, but makes it clear that it isn't easy to
get more than about 3K at 30 MHz in a single choke, and it will be difficult to wind a single choke
that covers 14-30 MHz (for use on a multiband antenna). Note that the "burbles" around 20 MHz
are measurement errors resulting from artifacts of the active attenuator in my HP 8657A, and not
characteristic of the actual choke.  

Important Note From 2018  I spent much of 2018 using a new measurement system to produce a
new Choke Cookbook. Using the measurement system described above, it took several hours to
measure a single choke and post-process the data in a spreadsheet to plot the magnitude of the
impedance. I measured dozens of chokes to produce the Cookbook, but rarely measured multiple
versions of the same choke. The new measurement system, using a vector network analyzer, al-
lows me to measure, annotate, and save the data in about two minutes, and it plots complex data –
that is, Z, Rs, and Xs.  I didn’t save the chokes wound with coax that I measured with the older
setup, but I did save the bifilar chokes, and there was reasonably good correlation between data
from the older system and the new one. 

Because the new system could measure and save data so quickly, I was able to measure many vari-
ations of the same chokes, and with far greater precision. This clearly demonstrated a major short-
coming of the coax chokes described here – the turn diameter, turn spacing, and, most important,
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the order in which the turns pass through the cores, all have a very strong effect on the choking
impedance, especially on where the choke resonates.  I quickly learned that these variations are so
great that the Cookbook for these chokes wound with coax on multiple cores produces wildly in-
consistent results. I no longer recommend winding turns of a coaxial feedline through multiple
cores as described here. My current recommendations, published in k9yc.com/2018Cookbook.pdf
are for RG400 or pairs of #12 teflon-insulated, THHN, NM wound tightly around a single core. Fig
40 is retained only to illustrate the curve-fitting process.

Fig 40 – Measured Impedance of RG8 Chokes
wound on stacks of #31 2.4" toroids 

Fig 41 – Impedance of a parallel resonant circuit of
320 uh, 4 pF, and 6,600 ohms

Curve Fitting to Find R, L, and C values:  Fig 41 is the impedance of a simple parallel resonant cir-
cuit consisting of a 320 µH inductance, a 4 pF capacitance, and a 6,600 ohm resistance.  Fig 43 is
simply a plot (using an ancient version of Quattro Pro) of the equation for the impedance of a par-
allel resonant circuit consisting of those component values.  The values were selected so that the
curve closely approximates the 5 turn choke wound on 7 cores in the vicinity of resonance – the
red curve in Fig 40.  This circuit has a Q of 0.73 at resonance.  Note that as we move away from
resonance by more than about 2 octaves (a 4:1 frequency change), the calculated curve increas-
ingly deviates from the measured data. This should come as no surprise, since the permeability
and the permittivity of the ferrite material vary with frequency.  

Note that for this particular choke, 4 pF is the total parallel capacitance around 4.5 MHz – the ca-
pacitance between the coax and the ferrite, plus the capacitance between the turns of the coax that
is close together within the cores, plus the capacitance between the turns of the coax that are
widely spaced outside the ferrite cores, plus the 0.4 pF capacitance of our test fixture.  How about
the capacitance at 30 MHz?  If we assume that the inductive reactance has dropped by a factor of
about 8 and the capacitive reactance has increased by the same ratio, the capacitance at 30 MHz is
approximately equal to 1/(2π f Z), or about 5.3 pF.  

How good are these circuit values?  Certainly they are a first approximation, based on an approxi-
mate equivalent circuit. I would trust them to about +/- 25%  – there easily might be enough stray
L and C in the test setup to contribute that much error. And remember, L, R, and C contributed by
the ferrites all vary because the complex permeability and the permittivity of the ferrites vary with
frequency.  So the answer to our question, "How much capacitance is there?" is, "typically between
about 1 pF for a small choke and about 7 pF for a larger one with a lot of turns."  The other part of
the answer is, we can control that capacitance and keep it small enough that our chokes work by
paying reasonable attention to winding style.  
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Fig 42 – Variation of chokes with winding style,
coax outer jacket material

Your Mileage Will Vary  Fig 42 shows the varia-
tion in impedance that can occur based on the
details of how the choke is wound, and on the
jacket  material.   The  magenta  curve  is  for  a
choke whose turns are tightly bunched together
both  inside  and outside  the  toroids.  Both the
stray  capacitance  and  the  inductance  of  the
coax  are  maximized  (for  a  given  number  of
turns and winding diameter).   The other three
curves are for chokes whose turns are intention-
ally spread wide apart outside the toroids. One
of them uses  somewhat  larger  diameter  turns
and a different type of RG8X. Capacitance is a
function of spacing, geometry, and the dielectric
material. The diameter of the shield, as well as
the thickness and permittivity of the jacket ma-
terial all can cause variations in the 

capacitance.  In all of the measurements, I saw the greatest unintentional variation from one to an-
other with chokes having a lot of turns of RG8X, and the least with those wound using RG8. My
work in 2018 to produce the New 2018 Cookbook found far greater variations.  

Tolerances in the Ferrites  Fair-Rite #31 cores are considered suppression components, and be-
cause in the world of suppression, more impedance is considered better, their  performance speci-
fications are typical minimum values of impedance over a range of frequency.  That's fine for our
purposes, but don't expect exact agreement from one part or batch to another.  

Chokes and Modeling  A wire can be added to an NEC model for a dipole (or other antenna) to an-
alyze the contribution of common mode current on the coax shield to antenna performance – sim-
ply connect a wire from one side of the feedpoint to ground. Beginning with version 4 of W7EL's
excellent EZNEC+, we can add a network, including a parallel RLC network, to any of the wires in
the model.  Use the values of R, L, and C that are determined empirically (see Figs 40 and 41, and
the associated discussion).  We might also add a nearby feedline that we suspect might need an
"egg insulator" choke, and study the results with and without the choke.  

Chokes in Series  As we learned earlier, the impedances of multiple chokes in series will add, tak-
ing the reactances of each choke into account.  That is, if one choke looks inductive and resistive at
a given frequency and the other choke looks resistive and capacitive, the resistances will add, but
the capacitance and  inductance will cancel (at least partially).

Bifilar Ferrite Chokes  can be as effective
as  coaxial  chokes  in  blocking  common
mode current, depending on the details of
how they are wound. While the data of Fig
43  correlates  reasonably  well  with  my
more precise measurements of the same
chokes  on  the  same  cores  in  2018,  the
new  2018  Choke  Cookbook  includes
many designs for  this  type of  choke,  all
taking  into  account  the  variations  from
one individual toroid to another.  

Bifilar Chokes and Transmission Loss A bi-
filar choke wound around a toroid forms a
short transmission line whose impedance
may be different from that of the line into
which it is inserted.  Thus, a  bifilar choke
can introduces some mismatch. 

Fig 43 – Some Useful Bifilar Chokes 
Measured in 2010 With Test Setup of Fig 39
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Loss in this type of choke is addressed in the New 2018 Choke Cookbook.

Effect of Wire Insulation  Fig 43 shows that the wire insulation varies the shape of the impedance
curve and shifts the resonance up in frequency.  More important, as I learned while developing the
new Cookbook, the insulation forces the conductors much farther apart than the enameled wire
pairs. Thanks to proximity effect, the enameled pair has considerably greater transmission line loss
thanks to “proximity effect.”
Proximity Effect  Just as the magnetic field associated with AC current forces current to the outside
of a wire (skin effect), the combination of the two fields produced by current flowing in opposite
directions on closely spaced conductors in a transmission line causes current to be concentrated in
the region of the skins of the two conductors that are adjacent to each other, and the degree of
concentration increases exponentially when the conductors are nearly touching. Just as skin effect
increases the resistance of a conductor at RF, proximity effect increases it even more. The mea-
sured loss for transmission line made from enameled pairs is nearly double that of pairs of THHN,
and three times that of Teflon insulated pairs, of the same wire size.   

A Common-Mode Choke as an "  Egg Insulator  "  Have you ever noticed the egg insulators in the guy
wires for an AM broadcast tower?  Their function is to prevent the guy wires from interacting with
the antenna.  The egg insulators break the guy lines into small enough pieces that each is a small
fraction of a wavelength at the operating frequency.  Often, one or more feedlines in a typical ham
station may interact with another antenna.  The result of this interaction is unpredictable at best;
there's a good chance that the result will degrade antenna performance.  Seasoned antenna engi-
neers know that any near-resonant object within several wavelengths of an antenna can interact
with it.  We also know that most interaction is multiplied by the cosine of the angle between the
wires. This means that interaction is likely to be greater for wires that run in parallel with each
other, and far less likely if they are at 90 degrees to each other.  

Here's an example from my own station.  When I first moved to present QTH in 2006, I installed a
top-loaded vertical (with a good radial system) that was working quite well on 80 and 160 meters.
A month or two later, I added a fan dipole for 20, 15, and 10 meters at about 100 ft. Most of the
150 ft-long feedline for the fan was vertical, rising about 90 ft from the vertical antenna, and it ran
right past the vertical's feedpoint to get to the shack.  I noticed that the vertical wasn't working at
all on 80, and wasn't working nearly as well as it originally did on 160.  On a hunch, I added a
common mode choke at the transmitter end of the feedline for the fan dipole and the 80/160 verti -
cal started working again! 

Use chokes as "egg insulators" on a feedline that is longer than about λ/4 at the frequency of an an-
tenna that it could interfere with.  Use the chokes recommended for the frequency of the antenna
that you suspect might be interfered with. Use enough chokes that the longest piece of un-choked
line is less than about λ/4.  Chokes are most important on lines that are approximately in parallel
with the antenna in question. Example:  A feedline is running where it might be interfering with an
80 meter vertical.  Try to break it down into pieces that are no longer than 80/4 meters (about 67
ft). Use the new 2018 Choke Cookbook as a guide for winding these chokes. k9yc.com/2018Cook-
book.pdf  

Receiving Antennas benefit significantly from the addition of a common mode choke to isolate the
antenna from its feedline.  Both ends of the RG6 feedline to each of my Beverages takes 8 turns
through one of the Big Clamp-Ons. See http://k9yc.com/RXChokesTransformers.pdf 

Shunting Common Mode RF to Earth  Earth connections are almost never a solution to RFI prob-
lems, but there is one important exception. We know that RF induced by antenna action on cables
entering or leaving equipment is coupled into the equipment by pin 1 problems, and by poor com-
mon mode filtering on balanced circuits. We can attack this kind of RFI by diverting that current
away from the victim equipment. We do this by connecting the shield to the shielding enclosure of
the interference source, or to the shielding enclosure of the victim equipment, or to the earth.

This technique can be used to suppress RF picked up on the coax feeding Beverage antennas.
Drive two ground rods at the feedpoint, one to terminate the Beverage and the other several feet
away. Make a coax jumper cable long enough to reach between the Beverage and the second

http://k9yc.com/RXChokesTransformers.pdf
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ground rod with enough turns for that 8-turn choke.  Connect the coax shield both at the Beverage
and at the second ground stake. Add a second 5,000 ohm choke on the shack side of the stake. 

To use this technique on telephone lines, which are balanced, you'll need equal value capacitors
from each side of the line to the ground rod.  Use only enough capacitance to shunt the RF – the
caps are in series across the line, and too much capacitance will kill or degrade a DSL signal. You'll
also need the chokes.  

Chapter 7 – K9YC's Choke Cookbook  
This chapter is deleted and replaced by the New 2018 Choke Cookbook. k9yc.com/2018Cook-
book.pdf 

Chapter 8 – Solving Problems in the Shack
K9YC's Serial Cable  Most rig control (Kenwood, Yaseu, and Elecraft) uses only a straight-through
connection of the Receive Data (RD), Transmit Data (TD), and signal return lines (pins 2, 3, and 5
in a DB9).  In addition, popular contesting software can be set up to use the DTR line (pin 4) to
send CW and CTS (pin 7) for PTT.  The K9YC serial cable uses CAT5 (or CAT6/7) cable.  One pair is
used for RD, one for TD, one for DTR, and one for CTS.  The solid color of each pair goes to the
signal pin, the striped color of each pair goes to the shell of the DB9.  Using twisted pair greatly
improves RF rejection, using multiple conductors for signal return minimizes IR drop coupling of
hum, buzz, and noise, and using the DB9 shell puts a band-aid on pin 1 problems in the equip-
ment on either end.  

There are several possible ways to implement the keying and PTT interface.  You can, for example,
put all four lines in a single CAT5/6/7 cable, with a breakout at the radio.  This usually results in an
interface that is tied to a particular radio.  You can also make a generic cable that carries only the
RD and TD signals, then add a DB9 female-male "barrel" at the computer that carries through RD
and TD while breaking out DTR and CTS for keying and PTT to short lengths of small coax with a
copper braid shield.  I've done both of these, and they both work fine.  

Plain, ordinary, unshielded CAT5/6/7 works fine for the vast majority of ham shacks.  If you are
running high power at 20 MHz or above to an antenna that is closer than about 10-20 ft from the
serial cable, shielded twisted pair cable may be needed.  You could use shielded CAT5/6/7 (if you
can find it), but good balanced audio cable with a braid shield works well too (for example, Belden
1901A, 1902A, etc.).  In this application, use one pair per circuit, but connect the signal returns for
each pair to pin 5 at each end, and use the shell of the DB9 for the shield(s).  

I developed the K9YC Serial Cable to solve an extreme "RF in the shack" condition at my old QTH
in Chicago.  The fact that it worked there proved how "bulletproof" a solution it can be.  To work
160 and 80 on my very small city lot, I tied together both sides of the twinlead feeding my 80/40
dipole and loaded it against a "ground" system that consisted of a wrought iron fence and a few
short radials. The feedline (in this case, a radiating part of the antenna) ran within 2 ft of the serial
cable.  With the original Elecraft serial cable (parallel wires, shielded) the computer line driver
locked up at just over 10 watts; with the unshielded K9YC cable, I could run that antenna at legal
power on any band below 15 meters!  On 15 meters and above, I needed the shielded version to
hit full power. [I didn't use this improvised antenna above 80 meters – it wasn't at all effective on
the higher bands. I loaded it that way only to test the effectiveness of the serial interface.] 
Why was shielding needed on the higher bands but not needed on the lower bands?  Simple. The
antenna was at a current maxima in the shack and the wiring was so close that it was in the near
field (less than λ/6), so coupling was primarily magnetic.  On the highest bands, the wiring was at
greater spacing as a fraction of a wavelength, so the electric field was beginning to be significant.
As  we  learned  earlier,  cable  shields  provide  only  electric  field  shielding,  while  twisting  pairs
strongly rejects magnetic fields. See Chapter 1 for a discussion of these fundamentals, and Chapter
9 for an introductory discussion of fields.  

Unbalanced Audio Interfaces  Because virtually all ham gear and all computer and/or audio equip-
ment we connect to our ham gear is unbalanced, we're stuck with unbalanced wiring.  In our dis-
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cussion of the fundamentals, we learned that shield resistance couples power-related hum, buzz,
and noise into unbalanced wiring as a result of IR drop on the shield.  We also learned that nearly
all of this gear has pin 1 problems.  And we learned that at power and audio frequencies, the IR
drop is minimized by four simple measures, and that their beneficial effects are additive.  

 Minimize the resistance by using cables with a beefy copper braid shield.  Avoid hi-fi patch
cables, which tend to have flimsy, high resistance shields.  (-6 dB/halving of resistance)  

 Minimize the resistance by keeping the cables as  short as practical. (This has the added
benefit of minimizing the behavior of the cable as an antenna, which in turn minimizes RF
coupled by a pin 1 problem where the cable terminates). (-6 dB per halving of length)  

 Minimize the hum/buzz/noise voltage that causes the current by plugging all of the inter-
connected equipment into the same AC outlet, or if that is not possible, into outlets with a
very short connection between their green wires (adjacent outlets). When using different
outlets, bond the backboxes together with short lengths of heavy copper braid. (This also
minimizes hum/buzz coupled by pin 1 problems). 

 Bond the enclosures of interconnected equipment together with short  lengths of heavy
copper braid. This diverts most of the hum/buzz current that would otherwise flow on the
cable shield to the lower resistance braid. You don’t need to buy braid – simply strip the
outer jacket from a junk length of RG8 or RG11 that has a heavy copper braid shield. The
braid of a good transmitting coax like Belden 8213, 8214, 8237 is equivalent to #10 cop-
per, which is nearly 30 dB better than the flimsy shields typical of most hi-fi cables. 

Audio Transformers   One common solution to the hum/buzz part of the problem is to add audio
transformers to each interconnection, thus breaking the path for low frequency current. Simple au-
dio transformers block audio frequency current, but the capacitance between their windings lets
RF couple across the transformer as it if weren't there.  To block RF, the transformer must include
dual Faraday shields. [A Faraday shield is a conductor placed between windings; when that con-
ductor is grounded, it shorts RF to ground rather than coupling it between windings.]

A cheap transformer can cause more problems than it solves. Most power supplies in our ham
shacks  include  large  power  transformers  that  produce  strong  audio  frequency  magnetic  fields
around them.  Transformers must be surrounded by mu-metal to shield them from these magnetic
fields – otherwise, strong 60 Hz hum (50 Hz in some countries) will be coupled into them! 
Transformers built with both of these shields aren't cheap. Good ones are made by Jensen Trans-
formers, http://www.jensentransformers.com and Lundahl Transformers,  http://www.lundahl.se  

The good news is that you don't need a transformer (or an expensive USB or fiber inter-
face) if you follow my guidelines for Unbalanced Audio Interfaces and use the K9YC Serial
Cable for rig control!  You only need one of these boxes if you need the SO2R switching,
interfacing, and control they provide. 

Digital Modes  A good quality (but not expensive) USB interface can improve decoding of some
digital modes by providing greater linearity and dynamic range. There are examples in http://k9yc.-
com/USB_Interfaces.pdf  The rules below apply equally when the interface is used.  

Feeding Computer Audio To Your Radio  If you want to know why this works, study the preceding
material and Appendix 5 on Audio Levels.  Do all of the following:

 Plug  all of the interconnected equipment into the same power outlet or to outlets in the
same backbox, and bond together all of the interconnected equipment with heavy copper
braid, as described above. 

 Make up a cable that connects one channel of your sound card output to the audio input of
your radio. Pay careful attention to the guidelines above for Unbalanced Audio Interfaces.  

 If the radio input is at mic level, add a simple resistive voltage divider inside the connector
that plugs into the radio.  Use a 4.7K resistor in series with the audio, and connect a 470
ohm resistor between the mic input and mic ground. If you're using a line level or "patch"

http://k9yc.com/USB_Interfaces.pdf
http://k9yc.com/USB_Interfaces.pdf
http://www.lundahl.se/
http://www.jensentransformers.com/
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input to the radio, make the series resistor 1K. This prevents the computer from overload-
ing the radio's input stage and causing distortion. 

 Carry the shield connections straight through from computer to ham rig. 
 Look for a setting in the control software for your sound card that sets Playback levels for

your sound card.  On a Windows PC, the setup screen can be accessed by clicking on the
speaker icon on the taskbar, then selecting Options, and then Playback. You should see a
screen with volume controls for various computer signals that can be sent out of the sound
card on the 1/8-inch jack. RTTY, PSK, and SSB messages are adjusted by the WAV output.  

 Adjust these Playback controls so that the maximum output level on peaks is about 6 dB
below the maximum output level of the sound card.  This prevents distortion from being
created in the sound card.  One good way to do this is to send RTTY or PSK tones from the
computer (using a program like MMTTY or DM780) and view them on a scope. Slowly in-
crease the level until you just begin to see clipping, then back off the level to get half the
voltage. 

 Adjust the mic gain in the radio for good modulation levels. 
Feeding Receive Audio To Your Computer  Some computer sound cards can be set for either a mic
level or line level input, while others have only a mono mic input.  All of the outputs of a modern
ham transceiver are line level outputs, but some are affected by the front panel audio gain control
and some are not.  Do all of the following:  

 Plug  all of the interconnected equipment into the same power outlet or to outlets in the
same backbox, and bond together all of the interconnected equipment with heavy copper
braid, as described above. 

 Choose an output of your radio that is not affected by the front panel volume control.  Out-
puts designed for the connection of RTTY, packet, phone patches, or other external gear
usually fit this requirement.  

 Make up a cable that connects this output to the input of your sound card. Pay careful at-
tention to the guidelines above for Unbalanced Audio Interfaces.  

 Look for a setting in the control software for your sound card that turns off the mic preamp
in the sound card.  On a Windows PC, the setup screen can be accessed by clicking on the
speaker icon on the taskbar, then selecting Options, and then Recording. You should see a
screen with volume controls for various inputs to the sound card.  Somewhere on that
Recording screen (or maybe buried in a sub-menu) should be a way to turn off the mic
preamp.  On my IBM Thinkpads, I must remove the "check mark" next to "Mic Boost." 

 Tune in a station so that you have normal audio coming out of the radio into your head-
phones or speaker.

 Adjust the input fader of the sound card so that the level indicator (if there is one) peaks
about 6 dB below maximum. If there is no level indicator, adjust the input level to the max-
imum it will go without audible distortion. 

Wired or WiFi Networking?  There are several parts to the answer to this question, all ending with,
"it depends."  My advice is to try wireless networking, and use it for as much of your system as you
can make work reliably. I abandoned wired Ethernet long before leaving Chicago in 2006.  

 Wireless Ethernet systems operate in the 2.4 GHz and 5GHz bands.  I've never heard of
these links causing or receiving ham interference, and the likelihood is thin, except possibly
on the 2.4 GHz ham band itself.  

 I've seen 2.4 GHz systems work for 1,000 ft, but conductive (or absorbing) obstacles can
make the RF link unreliable at 50 ft or less. 5 GHz systems provide significantly less range
and have greater problems with absorbing obstacles. 

 Two keys to successful WiFi networking are the choice of a high quality WiFi router (check
online sites like cnet for product reviews) and the location of that router within your home.
Try to find a location that is relatively central to equipment that you want to network, that
has few obstacles to transmission, and where the internet modem can be located. Interfer-
ence with neighboring systems can be minimized by a location relatively low in the build-
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ing.  
 While the Ethernet circuitry in a wireless router can be just as strong a source of RF noise

as any other Ethernet box, a wireless system will usually generate the least HF and VHF
trash in our antennas because it reduces the number and length of data cables that can ra-
diate, as well as the noise sources at each end of the link.  Be prepared to use chokes to
suppress any noise radiated by cables connecting the wireless router to the cable or DSL
modem, and also for inadequately shielded internal wiring that radiates trash.  

 Data speeds with modern WiFi systems are plenty good enough for anything I’ve done – a
typical Speed Test on my plain vanilla cable internet service will often hit 90MB/sec on a
laptop that has only a WiFi link to the cable modem. When my internet slows down, it’s
happening on the internet side of my modem, not within my system. 

Cable Mount Male DIN Connectors Used with Older Ham Gear
Configuration Switchcraft Part Nr Some Common Uses
4 pins at 210° 09BL4M, 09GM4M FT1000MP RTTY FSK
5 pins at 180° 05BL5M, 05GM5M FT1000MP Packet
5 pins at 240° 12BL5M, 12GM5MX
6 pins at 240° 12BL8M, 15GM6MX TS850 Acc 1
7 pins at 270° 15GM7MX TS850 Remote, ICOM Pwr Amp, Yaesu

DVS
8 pins at 262° 20BL8M, 20GM8M Yaesu Band Data
8 pins at 270° 15BL8MX, 15GM8MX

DIN Connectors  It is hard to find good quality DIN connectors to mate with interface and control
jacks on the back of ham rigs. Nearly all DIN connectors sold in the ham marketplace are junk.
These junk connectors have two serious defects that makes them useless; 1) the plastic melts
when you try to solder to them; 2) you can’t solder to them – the metal used for the pins is an al-
loy that doesn’t take solder!  These junk connectors are cheap, selling for around a buck, but
they’re worthless. Real DIN connectors are still made by Switchcraft and Tuchel, and sold by reli-
able electronics vendors like Newark and Allied.  They cost a lot more ($5-$7 each, depending on
the number of pins), but they work!  GM types have a two-piece metal shell held together with a
plastic barrel. BL types have a nickel diecast handle and a heavy duty cable clamp. 

Acceptable low cost DIN connectors  The YCCC team that put together the K1XM SO2R box found
a source for low cost DIN connectors made by Kobiconn. The 8-pin 270° male plug is Mouser Part
number 171-0278.  They bought 166 of them at 52cents each. These connectors solder well –
their only shortcoming is that the two pieces of their "clamshell" don't mate very well, so I wouldn't
want to use them in an application where they needed to be plugged and unplugged fairly often,
but they're fine if you plug them in and leave them alone. 

"Phono" Connectors  and 1/8-inch Audio Connectors I know of only two good quality manufactur-
ers of these connectors – Switchcraft and Neutrik.  These Neutrik and Switchcraft parts are sold
mostly by pro audio vendors; one of the best Full Compass Systems of Madison, WI. These Neu-
trik connectors are good quality, inexpensive (about $1), and work well for ham audio intercon-
nects. Their only shortcoming is that their contacts and strain relief clamps are too small for larger
cables – for that, you need the much more expensive Switchcraft parts (about $3), which are also
more robust. 

Cable-Mount 1/8-in and Phono Connectors
Description Switchcraft Part Nr Neutrik Part Nr

3-ckt male 1/8-in plug 35HDNN NYS231BG
2-ckt male 1/8-in plug NYS226BG

3-ckt female 1/8-in jack NYS240BG
Phono male plug 3502 NYS352

Phono female jack 3503

Cable for Audio Interconnects  Miniature coax is an excellent choice for unbalanced interconnec-
tions.  Impedance doesn't matter in this application.  For balanced connections, use braid-shielded



Understanding and Solving RF Interference Problems                                                                Page   40  

twisted pair.  Belden 1901A and Gepco XB401 are the best of this type that I know of.  

RF Feedback  Virtually all RF feedback (also called "RF in the shack") has a pin 1 problem as the
root cause. (See Figs 2, and 3 in Chapter One, and the associated discussion.) A few years ago, I
acquired an FT1000MP and got reports of RF feedback running 1.5kW on 75M and 15M SSB. The
15M transmitting antenna was a dipole (with a DXE "string of beads" balun) 150 ft from the shack!
I identified the cause as a pin 1 problem at the mic jack, using the simple test outlined below.  

Testing for RF Pin 1 Problems:  Set up a tunable RF generator for 100% 1 kHz (or 400 Hz) AM and
maximum output (1 volt into 50 ohms is enough).  Connect the center conductor of the coax from
the generator to the shield connection point at the radio, and connect the generator coax shield to
the chassis of the radio.  Set the radio to transmit SSB at very low power, and not at a frequency
where you have RF feedback. Listen to your signal on another radio while you tune the generator
over the frequency range where you have RF feedback.  If you hear the 1 kHz (or 400 Hz) modula-
tion, you have a pin 1 problem on that shield connection.  Repeat this test for every connector on
the radio that has (or could have) a cable plugged into it. For each connector that you are testing,
temporarily remove the cable connected to it while you are testing it. 

This test can be used to test any audio and video input and output connectors for RF pin 1 prob-
lems, not only the audio interfaces of ham transceivers. With video equipment, the 1 kHz modula-
tion may show up as horizontal bars in the video, or as 1 kHz (or 400 Hz) in the audio, or both.
See http://audiosystemsgroup.com/AESPaperNYPin1-ASGWeb.pdf for more on RF pin 1 testing. 

RF feedback can also be caused by audio interfaces like those used for SO2R contesting, and to in-
terface computers to radios for RTTY, PSK31, and other digital modes.  If you don't find a problem
in your transceiver (or if you find and fix it but still have RF feedback), be sure to test any of these
interfaces that you might be using (and the computer sound cards) for pin 1 problems. 

Solving RF Feedback Caused by Pin 1 Problems  RF feedback is caused by poor RF rejection in one
or more pieces of gear in your ham station.  In earlier chapters, we learned that RFI caused by pin
1 problems can be solved in two ways:  

 Rewire the connector so that the shield goes to the chassis, not the circuit board 
 Block the current with a ferrite choke  

Rather than rebuild the radio, I killed the RF feedback in my FT1000MP by winding 7 turns of the
mic cable around a #31 2.4" o.d. toroid.  

Chapter 9 – A Short Tutorial on Fields 
Fields  Electrical systems produce three kinds of fields –  electric,  magnetic, and electromagnetic.
An electric field is what is present in the relatively non-conducting space between two charged ob-
jects (for example, between the plates of a capacitor). 

A static magnetic field exists around a permanent magnet. Static (DC) and time-varying (AC) mag-
netic fields surround a wire that is carrying current.  Contrary to what you high school physics
teacher may have told you, a field produced by an electric current is a magnetic field, not an elec-
tromagnetic field.  

An electromagnetic field is the combination of a time-varying electric field and a magnetic field of
the same frequency at right angles to each other and 90 degrees out of phase with each other.  

Wave Impedance – Near Field and Far Field  The wave impedance of a field defines the relationship
between the energy in the two fields.  Wave impedance determines how well shielding will work
(and what kind of shielding will work).  (see Ott for an excellent discussion of wave impedance
and shielding effectiveness.)  

In the Far Field of a signal source (including a transmitting antenna):  
 the wave impedance is the impedance of free space – 377 ohms
 the energy contained by the two time-varying fields is equal, and is traded back and forth

between the two fields at the frequency of the signal

http://audiosystemsgroup.com/AESPaperNYPin1-ASGWeb.pdf
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 The field will move through free space at the speed of light – that is, it is a radio wave

In the near field of any source, either the electric field or the magnetic field will dominate (that is,
contain most of the energy), depending on how the field is produced.  Most "baseband" sources
(motors, transformers, power wiring) and many antennas are magnetic sources; a few RF sources
may be electric sources.  The wave impedance is very low in the near field of a magnetic source,
and very high in the near field of an electric source.  

The transition between near field and far field is a gradual one.  For sources that are small as a frac-
tion of a wavelength, the transition begins at λ/6 from the source.  For larger sources (like a line
source), the transition will be at a much greater distance.  In the far field, the power in the field
falls off as the square of the distance. In the near field, the dominant field falls off much more
rapidly until the two fields are equal.  

[One huge error in the application of FCC Part  15 Rules to BPL is that the rules are designed
around the physics of a point source, but BPL systems are, in effect, a line source, so field strength
falls off far more slowly.  The improper application of the Rules allows interference levels to be
tens of dB stronger than the authors of the Part 15 Rules intended.]  

The wave impedance becomes important when we are attempting to deal with interference in the
near field of the source.  We can state two generalities.  

 Virtually all electronic equipment is in the very near field of any power-related sources that
are strong enough to cause interference, and nearly all those sources are magnetic sources.

 Most electronic equipment in the far field of most radio sources. 

An important exception to these generalities occurs when an antenna is much closer than usual to
susceptible equipment.  λ/6 is about 84 ft on 160 meters, 44 ft on 80 meters, 22 ft on 40 meters,
etc.  The near field of a 160 or 80 meter antenna on an urban or suburban lot is likely include the
living space of the ham and one or two neighbors; in a condo or apartment, a 40 or 20 meter verti-
cal antenna may have consumer electronics within its near field.  These are only "rule of thumb"
guidelines – our antennas are not simple point sources, so the transition distance will not be so
simply defined.  An understanding of near field and far field behavior simply contributes to our un-
derstanding of how noise and RFI couple into systems, and which suppression methods are most
likely to be effective in any given situation. 
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POSTSCRIPT

It is impossible to overemphasize the importance of sharing what we learn. The initial impetus for
my work was a series of anecdotal reports of RF interference on an email reflector for engineers
and technicians working in pro audio that not only got me interested, but also gave me clues about
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possible causes.  A year  or two later,  I  made contact  with the aforementioned anonymous re-
searcher when both of us shared our work on an email reflector.  

As a result of having published earlier versions of the document you are reading, and of making
numerous presentations to ham clubs, I was contacted by engineers from the CIA, who I subse-
quently hosted in my shack and briefed on my work.  A year or so later, the leader of that group
sent me a pdf of an unclassified report prepared by a Department of Defense engineer in 1966 on
the topic of using ferrite common mode chokes to isolate antennas from their feed lines. Among
the key conclusions were 1) common mode isolation of the antenna from the line is highly desir-
able; 2) 5,000 ohms of common mode choking impedance is a suitable design goal; 3) the simpli-
fied equivalent circuit of a ferrite choke is a parallel resonant circuit; 4) the accuracy of the equiva-
lent circuit can be improved upon at low frequencies by adding resistance in series with the induc-
tor; 5) the low Q parallel resonant circuit near resonance is a good way to provide that choking im-
pedance; 6) inductance and stray capacitance can be used to control the resonances, by varying
the material, the number of windings, and the winding style; 7) increased conductor diameter in-
creases stray capacitance; and 8)  three chokes in series, each tuned to a different part of the fre-
quency spectrum, can satisfy the 5,000 ohm design goal from 2-30 MHz.  

For all practical purposes, there are only three important differences between the 1966 work and
my own are

1) the properties of the specific ferrite materials available in 1966 and 2003, when I began my
work

2) the author of the 1966 report seems not to have recognized the behavior of the ferrite core
as a dielectric (and the resulting contribution to stray capacitance), or of the fundamental
resonant property of a single turn choke with the capacitance associated with that dielec-
tric;

3) I published my work widely, first as peer-reviewed research papers to the Audio Engineer-
ing Society, and later on my website to both the audio and ham radio communities as a
whole. I've seen no evidence that the DoD report was ever circulated outside the Defense
community.  

As a result, even though it was excellent, that 1966 DoD report appears to have disappeared into
oblivion, while my work has found its way into the ARRL Handbook.  In the first four years follow-
ing my first publication of this document around 2007, there were more than a million downloads
from my website, and I've received many useful questions and comments that have allowed me to
learn more, find mistakes, filled gaps in my thinking, and given me more ideas to investigate.  
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Appendix 1 – Ferrites Useful to Hams For Suppression and Chokes

Fair-Rite
Part Nr

Dimensions (inches) Approx Cost Freq Range
(MHz)Form o.d. i.d. Length Mix 250 pc 1,000 pc

2631803802 Toroid 2.4 1.4 0.5 #31 < $5 < $3 0.5 200
2643803802 Toroid 2.4 1.4 0.5 #43 < $4 < $2 5 250
2661803802 Toroid 2.4 1.4 0.5 #61 < $4 < $2 50 150
0431164181 Medium Clamp-On 1.2 0.51 1.22 #31 $3.25 $2 1 300
0431173551 Large Clamp-On 1.2 0.74 1.65 #31 1 300
0431177081 Biggest Clamp-On 2 1.03 1.474 #31  < $11 < $7 1 150

 
Notes:  

1) Use of  these ferrites below 100 MHz requires multiple  turns,  multiple cores,  or  both.
Study the text and the data.  

2) #61 material can be used for transformers that must handle power.  A single 2661803802
core can easily handle 100 watts with suitable windings.  All other listed materials are rec-
ommended only for suppression, choking applications, and small signal transformers. 

3) The excellent Fair-Rite catalog can be downloaded as a pdf from http://www.fair-rite.com
Costs are based on quotes during 2006.  

Manufacturer's Published Data

   Cylinder for RG8X, RG6 

043117828

    Clamp-On For RG8X, RG6

        Cylinder for RG8

0431164181

       Clamp-On for RG8
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Measured HF Data for Chokes on 2.4" o.d., 1.4" i.d. Toroids 

Note: All of these data apply to chokes wound with small diameter wire.  Chokes wound with cable
diameters larger than about 0.2" (RG58) have more stray capacitance, moving the resonance down to
a greater extent than those wound with small wire.  See Figs 40 – 45 for data on some larger chokes. 

#31 Impedance #31 Equivalent Series Resistance

#43 Impedance #43 Equivalent Series Resistance

#77 Impedance #77 Equivalent Series Resistance
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#61 Impedance #61 Equivalent Series Resistance

#31 Impedance VHF #31 Equivalent Series Resistance VHF

#43 Impedance VHF #43 Equivalent Series Resistance VHF

#61 Impedance VHF #61 Equivalent Series Resistance VHF
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Measured HF Data for #31 "Biggest Clamp-On"

Impedance Equivalent Series Resistance

Buying Ferrites
Sadly, nearly all vendors selling ferrites in the ham marketplace are selling the wrong parts, and at
obscenely high markups (4-5X typical). There are much better ways to buy. All of the ferrite parts
described in this tutorial are made by Fair-Rite, a great company based in upstate New York.  Fair-
Rite has an excellent website with an extensive on-line catalog and a list of distributors.  If you are
willing to buy in quantity, you can do business with these distributors and buy at much lower cost.
Established industrial electronics distributors like Arrow, Mouser, Newark, Allied, Lodestone Pa-
cific, Dexter Magnetics, and Kreiger Components have all provided good service and competitive
pricing on Fair-Rite parts.  Don’t bother these companies with onesy-twosey orders – all you’ll do
is make them angry. Consider 20 pieces a minimum order, and combine orders with other hams
for quantity discounts. Ferrites are brittle and easily broken in shipping if not carefully packed. To
minimize breakage, try to buy in box quantities that are packed by Fair-Rite. Arrow is an especially
good vendor for parts they stock, offering free shipping for orders of $20 or more. 

Better yet, join or organize a group purchase with a ham club that includes lots of active HF opera-
tors, DX chasers, and contesters. These guys are most likely to have RFI problems, and to be push-
ing to optimize their stations to pull weak signals out of the noise.  If you’re active on HF or 6M,
you can use a lot ferrites – taming RFI to home entertainment systems, and minimizing the noise
you hear in your radio from noisy equipment in your home and the homes of your neighbors. Des-
ignate a club member who has worked in industry buying electronic parts to do the business with
the distributor(s), and another member to collect the money and distribute the parts once they ar-
rive. Expect to pay sales tax and shipping.  

How Many Ferrite Parts Should You Buy? Use the table below to estimate how many ferrite parts
you can use over a period of several years, both in your station and for killing receive noise.  

Number of 160 -10M transmitting antennas
If you use a 400-600 watt amp, multiply by 2 
If you use a 700-1,500 watt amp, multiply by 3
If you chase DX or work contests, multiply again by 1.5
If your antennas are close to your living space or your neighbors (like on a city or
suburban lot), multiply again by 1.5 
Multiply  the  largest  number  above  by  2/3  and buy this  quantity  of  #31  2.4”
toroids (Fair-Rite #2631803802)
Buy one #31 “biggest clamp-on” (Fair-Rite #0431177081) for every three toroids 
Buy one #31 large clamp-on (Fair-Rite #0431173551) and one medium clamp-on
(Fair-Rite #0431164181) for every toroid
Buy five #31 “biggest clamp-on” (Fair-Rite #0431177081) for each 6M antenna
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 Appendix 2 –Grounding and Lightning Protection  
Grounding for lightning protection is another one of those widely misunderstood topics.  This au-
thor is not an expert on lightning protection, so the following discussion should be used to under-
stand fundamental concepts, and as a summary of good engineering practice.

What Lightning Is  Lightning is the discharge of an electrical charge (that is, a potential difference)
that builds up between some region of space and some other region of space.  Air acts as an insu-
lator, but breaks down (that is, arcs over) at some high voltage.  The arc-over is a huge current
pulse with an extremely fast rise time and short duration.  

Spectrum and Waveshape  Any short duration pulse consists of an infinite number of harmonics,
the relative strength of which is determined by the rise time of the pulse and the impedance of the
current path.  It is a major mistake to think of lightning as DC.  Yes, there's a DC component, but
IEEE data shows that most of the energy in a lightning strike is in the MF spectrum (300 kHz-3
MHz).  So when designing a ground system for lightning protection, we need to think of the im-
pedance of grounding and bonding conductors at these frequencies, NOT at DC.  

Common Bonding  The single most important element of a lightning protection system is the
bonding together of the reference planes (that is, circuit common) for every element of the system.
A bond can be defined as a low impedance connection that is mechanically and electrically robust.
At frequencies above a few hundred Hz, the impedance of virtually any conductor is dominated by
inductance, not resistance.  Bonding conductors should be "beefy" so that they don't melt, and as
short as possible (so that they have low inductance).  

Earth As a Reference Plane  The earth is an important reference plane.  We can think of earth as a
plane of infinite size, but whose conductivity varies widely, depending on the chemistry and geol-
ogy of the soil (or rock) and its moisture content, from fairly good to very poor.  Conductivity can
vary significantly between points that are very close together for a variety of reasons, both natural
(the presence of rocks, streams, earth stratification) and manmade (excavation, land filling, build-
ing structure, buried pipes). 

Lightning Protection  The most fundamental elements of lightning protection are:
 A low impedance path for lightning to our reference plane (earth) that does not include our

house or ham station 
 Common bonding of everything in our building, including our equipment, so that, in the

event of a lightning strike, the potential difference between equipment is minimized  
 Protection devices on all power, signal, and control wiring connected to our equipment 

Earth Electrodes  An earth electrode is an electrical connection to the soil, whether intentional or
unintentional.  A ground rod is an example of an intentional connection – what the NEC calls a
"made" electrode.  Any building or installation is likely to have many unintentional connections to
earth – building steel, conductive cold water pipe, conductive gas pipe.  We can reduce the imped-
ance to earth of an electrode by increasing the surface area in contact with the soil, but at lightning
frequencies (radio), the major component of the impedance our ground system is the wire between
the electrode and our equipment!  
UFER Electrodes  Concrete can be a good electrical conductor or good insulator, depending on its
formulation.  Most concrete used in construction is a fairly good conductor.  A Ufer (named for its
inventor, Herbert Ufer) is an electrical conductor encased in conductive concrete to form a made
electrode.  Structural steel on a concrete foundation acts as a Ufer, including a ham radio tower sit-
ting on concrete that is electrically conductive.  

Ground Electrodes in Difficult Soil  Ground electrodes don't necessarily need to be vertical rods – if
rocky soil makes vertical rods difficult, consider multiple shorter rods, or burying wires or conduc-
tive plates horizontally. The main reason for going deep below the surface is to get to in contact
with moist (low resistivity) soil.  

Bonding Earth Electrodes  All earth electrodes that lightning might view as associated with our
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house or ham station should have an effective low impedance bond between them.  The imped-
ance to earth of a ground system will be the parallel combination of all earth electrodes (ground
rods, building steel, tower footing, cold water, radials), plus the inductance of the wire connecting
them. The capacitance between a big radial field and the earth can be a significant component of
lowering that impedance in the 300 kHz – 3 MHz region where the energy of lightning is concen-
trated.  

Star Bonding  is designed to provide a low impedance path for lightning current to earth that does
not include the building, the electrical system, or equipment within the building.  It also provides a
single path to earth for lightning current induced in building wiring, and minimizes the potential
difference between equipment within the building in the case of a strike.  In a star-bonded system:

 All the earth electrodes are bonded together
 All equipment and systems within a building are bonded together
 A single connection is made between the earth electrode system and the building systems

(the center of the star) 
 All external wiring is bonded to the center of the star – the power system neutral, shunt

mode lightning protection devices, cable TV entry, the shields of antenna wiring, the base
of a tower, etc. 

Power System Bonding  In North America, building codes generally require that an electrical instal-
lation conform to the National Electrical Code (NEC).  A few cities (including Chicago, Los Angeles)
have their own codes that are generally similar to NEC.  These codes apply to premises systems –
that is, buildings and facilities connected to mains power.  They do not apply to systems that are
strictly portable – for example, a motor generator in a vehicle, and they do not apply to power dis-
tribution systems outside buildings (that is, the power company's wiring).  They do apply to a por-
table generator or solar system that is connected to premises wiring.  Some industrial systems,
such as those running heavy equipment are exempt from some of these requirements.  See http://
audiosystemsgroup.com/SurgeXPowerGround.pdf   In general, North American building codes re-
quire:

 that all earth electrodes shall be bonded together
 that a bond shall be made from the earth electrode system to a single point on the power

system.  In a residential system, the point of connection must be to the neutral bus at the
service entrance  

 that one conductor of the power system (the neutral) be bonded to earth. NEC refers to the
neutral as "the grounded conductor"   

 that a third wire, called the equipment ground, or "green wire" (protective earth or PE in the
UK) is carried to every mains power outlet, and via the power cord to exposed metal in all
connected equipment  

The sole function of the equipment ground is to blow a fuse or circuit breaker in the case of a fault
(failure of equipment or wiring), thus protecting personnel from electrical shock and preventing
fires.  An equipment ground should never intentionally carry current (that is, serve as a return for
load current).  That is the function of the neutral. 

The bonding requirements of these standard building codes are based on solid engineering.  They
have been formulated and refined over the years by some of the best engineering minds on the
planet, including many who are very aware of the RF implications of the requirements.  There is
no conflict between these grounding and bonding requirements and excellent performance of ra-
dio transmitting or receiving systems.  Those who advocate separate, unconnected grounds for
power and radio systems are simply wrong.  

http://audiosystemsgroup.com/SurgeXPowerGround.pdf
http://audiosystemsgroup.com/SurgeXPowerGround.pdf
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Putting It In Practice – Grounding and Bonding For Your Home and Ham Station
Basic Home Bonding Mains power enters most North American homes as a 3-wire feed from the
secondary of the power company's center-tapped 240 Volt transformer. Those wires are 120V+,
120v-, and the center tap (neutral). The neutral is bonded to ground at one or more points in the
power distribution system (that is, outside your home), and it must be bonded to the frame of the
breaker panel (ground) where it enters your building. This point must also be bonded to at least
one driven ground rod (more rods are better), and to every other grounded element in your build-
ing, including grounds for telephone wiring, cable TV wiring, satellite downlinks, and antennas. All
of this should have been done by the installers of these systems, but it's always wise to inspect this
carefully to make certain it was done correctly.  I found numerous serious errors and omissions in
the home I bought in California. 

Ham Station Bonding  All equipment in the shack should be bonded together. Ideally, the bond
should be from chassis-to-chassis, should be very short, and should follow the path of any unbal -
anced connections between equipment.  Equipment that  should be bonded includes the trans-
ceiver, any computer, audio accessory boxes, and the power amplifier. Bond from this collection of
equipment to the power system ground, and to point where your antennas are grounded. If your
tower is close to the house, it should also be bonded to the building ground common point. 

How Many Ground Rods?   There is no restriction on the number of grounds that can be added to
an installation, as long as they are all bonded together and to all other grounds associated with the
building.  Their point of connection to the power system is to the ground bus, not to the neutral.
There must be one, and only one, connection between neutral and the power system ground bus,
and it must be where power enters the building, and that connection is normally made by the elec-
trician who installs the power system. 

Grounding, Bonding and Loops  All my life, I've heard about these mysterious things called "ground
loops" that are somehow responsible for hum and buzz. They're part of the folklore – the oft-re-
peated lie that is accepted as truth. And like many false concepts, there's a grain of truth. 

Loops  Current flows in a loop – a complete circuit. That current produces a magnetic field that is
proportional to the current and the area of the loop. Likewise, a magnetic field induces voltage,
and thus current, in the loop that is proportional to the strength of the field and the loop area. The
only negative property of a loop is the associated magnetic coupling. In virtually all buildings, in-
cluding our homes, there are three possible sources of magnetic fields – 60 Hz fields that are leak-
age flux from power transformers, 60 Hz fields that are the result of wiring errors in the power sys-
tem, and the fields established by lightning.  If you hear hum in your system, the cause is usually
some form of loop or an unshielded audio transformer.  Loops are not responsible for power line
"buzz." 

The Real Cause Of Buzz is  leakage current on the AC power line. The current path is from the
power system phase conductor (the 120V "hot" conductor) through stray capacitance between that
phase conductor and the equipment chassis. That stray consists of capacitance between the power
transformer winding and it's frame, and filter capacitors between the phase conductor and the
equipment chassis.  That current produces an IR drop in the "green wire" that is proportional to its
length back to the breaker panel. When we make unbalanced connections between two pieces of
equipment that are plugged into different outlets, each equipment chassis is at a different AC po-
tential, so when we try to connect them, the difference between the two chassis voltages is added
to the signal! 

Why Is It Buzz Rather Than Hum?  The answer is a bit complex, and relates to the widespread use
of 3-phase power for distribution by the power company to our neighborhoods. Few of us have 3-
phase power in our homes, but many businesses connected to the same system do, and we hear
their buzz!  Any equipment connected to the power line that includes a rectifier-capacitor filter will
draw current in the form of pulses at the top and bottom of the sine wave. These pulses are rich in
harmonics of  60 Hz.  In 3-phase systems, all  harmonic currents that  are divisible by 3 (called
"triplen" harmonics) will add in the neutral and in the ground, while the fundamental, and other
harmonics will cancel. Because the coupling for leakage current is capacitive, it also increases lin-



Understanding and Solving RF Interference Problems                                                                Page   51  

early with frequency. 

The Simple Cure For Buzz  is a two-step process.  

1) Plug all your station equipment (radio, amplifier, computers, interface boxes) into power
outlets that share the same "green wire" back to the breaker panel (for example, outlets in
the same steel backbox). If you must use multiple outlets, bond all of their green wires to-
gether with short fat copper. This typically reduces buzz by 20 dB or more, simply by tak-
ing the IR drop from the outlet to the breaker panel out of the audio circuit – whats left is
on the drop in the much shorter power cords running to the outlets. 

2) Bond from chassis to chassis of interconnected equipment with short, fat copper, parallel-
ing the signal flow of the interconnecting cables. For example, bond from your computer
chassis to your transceiver if you're using it to encode and decode digital audio, or to send
CW or play voice messages in a contest.  This bonding typically reduces the buzz by an-
other 20-30 dB, making it inaudible.  

SURGE SUPPRESSION

Surge Suppression  devices are designed to prevent damage to equipment caused by lightning
flowing into equipment.  There two fundamental types – shunt mode, and series mode.  

Shunt mode suppressors conduct the lighting current, hopefully diverting it away from the pro-
tected equipment (and often onto the  equipment ground conductor).  Gas discharge tubes and
metal oxide varistors (MOV's) are the most commonly used shunt mode suppression devices.  At
low voltages,  they  look like  an open circuit,  but  conduct  when the voltage exceeds a  certain
threshold.  

Series mode suppressors block the lightning current by adding a high reactive impedance (an in-
ductor) in series with the lightning current. The energy in the lightning strike is stored in an induc-
tor, then discharged slowly (and thus harmlessly) back into the power line. http://www.surgex.com

Disadvantages of Shunt Mode Suppressors  There are three very strong negatives.  
 When a shunt mode suppressor conducts a lightning strike to the equipment ground, the

IR drop in the "green wire" raises the potential between the equipment ground at the "pro-
tected" outlet and other "grounds."  Consider two pieces of gear plugged into different out-
lets, with signal wiring between them. One of them has a shunt mode suppressor, the
other does not. Or perhaps they both have suppressors, but they see different lightning
currents and have different lengths of green wire to "earth."  In either situation, the differ-
ence in potential between the two equipment grounds can be thousands of volts for the in-
stant of the strike, and one or both of those pieces of equipment is likely to experience a
destructive failure. 

 Shunt mode suppressors degrade and/or eventually fail, as they absorb some finite amount
of energy.  They may fail shorted or open. It is not practical to test for a degraded or "failed
open" condition.  As a result, it easy for a shunt mode device to have failed and offer little
or no protection, but you don't know it!  

 Shunt  mode  suppressors  will  conduct  non-destructive  noise  spikes  to  the  equipment
ground, and the resulting noise current can radiate and be picked up on antenna systems.  

Advantages of Shunt Mode Suppressors  Shunt suppressors are much cheaper than series mode
suppressors. They are the only practical method for protecting signal circuits and for protecting an
entire building (that is, a "whole house" suppressor" at the service entrance).  

Advantages of Series Mode Suppressors  Series mode suppressors reliably protect equipment on
branch circuits without causing destructive failures on equipment on other circuits.  

Disadvantages of Series Mode Suppressors  They are larger and more expensive than shunt mode
suppressors, and it is not practical to build series mode suppressors with capacities larger than
about 30A.  

http://www.surgex.com/
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Recommended Surge Suppression Strategy  

Install a "whole house" suppressor at the service entrance as your first line of defense against light-
ning coming in on the power line, and other power line faults.  

Use series mode suppressors on branch circuits (that is, between the breaker panel and equip-
ment) to control lightning induced on branch circuit wiring.  Never use shunt mode suppressors
(MOVs) on branch circuits. 
Use shunt mode devices only in parallel with the RF inputs of sensitive equipment (antenna inputs,
inputs of telephone equipment, computer network equipment, etc.)  When shunt mode devices
are on balanced wiring (telco, ethernet, etc.), do not return them to the green wire; use the
star ground as their return. 
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Appendix 3 – Audio for Ham Radio
Input and Output Levels  One of the most important parts of audio interconnection is getting the
levels right.  It's easy to do it right – as long as you know that you need to do it.  

Output Levels  The maximum output level of most computer sound cards is on the order of 1 volt
RMS (corresponding roughly to digital clip).  The output stage can usually produce enough current
to drive most headphones to reasonable listening level.  Most output stages will begin produce sig-
nificant distortion about 6 dB below their maximum output level.  For this reason, it is very impor-
tant to stay below this level on digital modes like PSK31.  

The maximum output level of most radios is also on the order of 1 volt RMS at clip level.  Most will
drive an 8 ohm loudspeaker.  

Input Levels There are (at least) five common types of inputs, and each operates at a different level.
Balanced mic level inputs typically operate between 1 mV and 100 mV rms, and may clip at 1 V
rms.  Unbalanced mic inputs typically work between about 10 mV and 250 mV, but may clip at
levels as low as 250-500 mV rms.  Balanced line inputs typically clip at about 10V rms.  

Input and Output Impedances  Contrary to popular belief, 600 ohm inputs and outputs haven't
been used in pro audio in almost 40 years.  Modern output stages have a low output impedance –
typically 100 ohms or less for pro products, and 350 ohms or less for consumer products.  Mod-
ern input stages have a high impedance – typically 1K for pro mic input, 10K for a pro line input,
50K for a consumer line input.  In other words, modern equipment operates on the basis of volt-
age matching, not power matching. Line level output stages are designed to provide voltage, not
current, and input stages are designed to not draw current.  

The performance of a line level or mic level output degrades when it is connected to an input stage
that "loads" it – that is, a low impedance input that draws current.  Degradation comes in the form
of reduced output level and increased distortion at higher output levels. Sadly, the designers of
some ham gear haven't gotten the word, and still load their input stages with low value resistors.
The Elecraft K2, for example, must be modified to work with a professional mic. 

Loudspeaker Outputs  There are two primary differences between a line output and a loudspeaker
output of most ham rigs.  

 A loudspeaker output is fed by a power amplifier that is designed to deliver current into an
8 ohm load.  A line level output is fed by a simple stage that provides about the same volt-
age, but it is not designed to deliver current.  

 A line level output is usually not affected by a front panel volume control.  

Matching Levels  An audio signal chain will have optimum sound quality and least noise pickup
when its signal levels are matched.  A simple way to describe correct level matching is to say that
the gains are adjusted so that every stage in the signal chain is operating just below the level where
distortion begins to rise drastically.  For most analog stages, this is the "clip" level, where the tops
of a sine wave would be clipped.  For digital stages, it is 0 dB FS (0 dB re: full scale, where the A/D
and D/A converters "run out of bits.")  We don't want the signal to actually hit the clip level, but we
want it to be about the same number of dB below clip (3-6 dB is a good range) at every point in
the signal chain.  

Matching levels does three things for us.  
 It assures that distortion produced in the electronics will be minimal. 
 It minimizes the contribution of each gain stage to the noise level.
 It minimizes the contribution of noise on interconnect wiring.   

Speech Intelligibility  The primary goal of most ham radio transmissions is communication.  We are
often working with less power, or an inferior antenna system, or in the presence of noise, over
very long distances, or very difficult propagation.  To get the most from our stations, we need to
optimize their intelligibility.  The major factors that contribute to intelligibility are:

 Frequency content  Nearly all intelligibility in speech is contained between 400 Hz and 5
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kHz, with the range between about 1 kHz and 3 kHz being most critical.  Lower frequency
sounds provide more pleasing sound (" body") and higher frequencies more "presence."  To
get the most "talk power," we want to concentrate our transmit power in the 500 – 3,000
Hz range, without wasting transmit power on the lower frequencies, and without allowing
the higher frequencies to create (or receive) splatter from adjacent channels. 

 Equalization  is used to optimize the frequency content of the transmitted audio.  We use
low pass filters to reduce the strength of low frequency sound that eats transmitter power
but doesn't contribute to intelligibility.  We also use some response boost around 3 kHz to
maximize clarity.   

 Signal to noise ratio  Speech intelligibility is degraded by noise.  We can minimize the noise
by minimizing the receive bandwidth (but not so much that we lose audio frequencies be-
tween 500 Hz and 3 kHz). 

 Dynamic processing  Human speech naturally has peaks and valleys of loudness. The loud-
est peaks can't be allowed to exceed our permitted transmitter power (or FM deviation),
but we don't  want the valleys to fall  into the noise.  That's  where dynamic processing
comes in – we use peak limiters and compressors just before the modulator in our radio to
reduce the strength of peaks, then turn of the level on the entire voice signal so that the
peaks just hit the maximum permitted output (or FM deviation).  The difference between a
peak limiter and a compressor is primarily their time constants – that is, compressors act
relatively slowing to smooth out the difference between the loud and soft parts of speech,
while peak limiters act very quickly to catch short term transients that would overmodulate
the transmitter.  

To sound good, dynamics processing must be done artfully – if the peaks are reduced too
sharply, or excessively, the audio can be distorted and sound unnatural.  In the transmit au-
dio chain, the audio should first be equalized to achieve the desired frequency content
(that is the balance between highs, mids, and lows), and then passed through the dynamics
processing. 

 Time distortion and echoes   Anyone who works with sound systems in churches or audito-
riums knows that sound that bounces around a room and arrives at our ears as reverbera-
tion or an echo degrades speech intelligibility.   Echoes and time smear can also occur
when a signal is propagated to us over multiple paths at the same time.  It can be really
tough to copy a signal that is reaching you by both a long path and a short path – one will
be offset in time from the other, and you'll hear an echo.  

The combination of good dynamics processing and careful shaping of the frequency response can
make a 10-13 dB difference in "talk power."  10 dB is equivalent to multiplying your transmitter
power by a factor of 10x; 35 dB is equivalent to 20x! Response shaping typically contributes 3 dB of
that improvement, dynamics processing is good for 6-10 dB. Be careful not to overdo it – too
much processing makes you harder to copy, sounds bad, and can create splatter. 

Microphones  come in four basic types. Dynamic microphones have a diaphragm attached to a
voice coil that moves within the field of a permanent magnet.  Condenser (and electret condenser)
microphones have a conductive diaphragm forms one plate of a capacitor.  Most mics commonly
used with telephones,, consumer equipment, and ham gear are electrets.  Before electrets, carbon
mics were widely used in telephones, and crystal mics were used with low cost consumer equip-
ment.  

Directional Patterns  An omnidirectional mic picks up sound equally in all directions.  A directional
mic favors (usually) one direction (cardioid) or two directions (bi-directional, also called "figure-of-
8").  Most performance mics are cardioids.  Cardioids work by canceling the sound from a front
and rear opening for sounds coming from directions other than the front.  Hypercardioid and su-
percardioid mics have a slightly narrower pattern than a cardioid, thanks to combining front and
rear entry ports at a different ratio.  

Noise-cancelling mics are designed to be used very close to the mouth and reject background
noise.  They use two capsules that are combined out of polarity to cancel sound more than an inch
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or two from the mic.  Noise canceling mics are very subject to sibilance and breath noise, so they
don't sound very good, and should generally be used only when the background noise is so loud
that communications would be difficult without them (aircraft cockpits, etc.).  They are a poor
choice for most ham radio applications.  

Electret Mics  Many modern microphones, and virtually all miniature microphones, have electret
condenser capsules.  They come in two basic forms.  What these forms have in common is a VERY
high-Z electret capsule (tens of megohms) with a FET follower to get it down to about 10K.  The
most common form of professional electret mics adds a gain stage with a balanced output to drive
a professional sound mixer.  

Phantom Power  Professional condenser mics get their power from the balanced line in what the
old telco guys would call simplex – that is, V+ equally on the signal pair, V- on the shield. This is
called phantom power.  Several common voltages are in use, with 48 volts through a matched pair
6.8K ohms to both sides of line being the most common. The mic has an on-board voltage regula-
tor, and most mics actually work between 9 and 20 volts.  There is also a nearly obsolete standard
that put power in series, called T-power. It was popular with film folks for a while.

The second form of electret mic is designed to be used with unbalanced inputs, like those that are
part of wireless mic transmitters.  The capsule with the FET follower has unbalanced wiring to pig-
tail leads, which are then soldered to the appropriate connector.  Electret mics of this form can
drive a ham rig directly, but need a small dc voltage from the transmitter to bias the FET (with a
suitable series resistor).  The mic connectors on most ham transceivers has DC available, but you'll
need to add the resistor.  Shure, Audio-Technica, AKG, and Sony all make miniature electret mics
like this for use with wireless mics that will  work well with ham transmitters; only Shure and
Crown have "headworn" versions. Be sure to buy an omni-directional version though – the direc-
tional mics all have proximity effect, so they don't work well at all for communications use.  

Proximity Effect  Virtually all popular "vocal" microphones are directional mics, and nearly all of
them exhibit proximity effect – the "boosting" of low frequencies for a sound source very close to
the mic.  The exception is the family of "variable-D" microphones made by Electro-Voice – the
RE16, RE18, RE20, and RE27 (also the discontinued RE10, RE11, RE18, and 666). AKG and Shure
used to make variable-D mics, and you may find them used. They are the AKG D202, D222, and
D224, and the Shure SM53, SM54. If you're going to use a pro mic with your ham rig, it ought to
be either one of these mics or one of the miniature omnidirectional electrets.  I mostly use an RE16
for HF SSB.  The advantage of the variable-D mic over the omni is that it rejects noise in your
shack (like the fan in your power amp). 

Fig A6-1a SSB TX and RX Response Fig A6-1b – Shure 450 Communications Mic

Frequency Response of SSB   Fig A6-1a is the response of typical 2.7 kHz crystal filters used to
generate and receive SSB. The red curve is the response of the TX filter alone; the red curve is the
cascaded response of the TX filter and the filter in the receiver.  In addition, an international stan-
dard calls for limiting bandwidth to 2kHz, and many SSB rigs have a built-in 2kHz rolloff. The fre-
quency spectrum between about 1kHz and 3kHz is critical to good speech intelligibility, so the se-
vere rolloff of Fig A6-1a tends to make speech somewhat muffled and indistinct.  The rolloff can be
compensated by boosting (pre-emphasizing) the response in the 2-4 kHz region.  Virtually all pop-
ular "communications" microphones are built with this boost, so they sound fine.  The Shure 450
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(Fig A6-1b) and the various Heil mics are examples.  

Using Professional Low Impedance Mics With Your Ham Gear  Most pro mics, built with relatively
flat (that is, accurate) response, sound muddy and dull when connected to many ham transceivers.
Use a twisted pair cable that has a braid shield to connect the mic to your ham gear.  This cable
needs a 3-pin female XLR on the mic end and a suitable ham mic connector (usually 8-pins) on the
other.  The twisted pair goes to pins 2 and 3 of the XLR, and the shield goes to pin 1. The wire
from pin 2 of the mic goes to the mic input of your radio. The wire from pin 3 to the "audio
ground" of your radio.  Wire the cable shield to the chassis of your radio (hopefully the mic con-
nector is bonded to the chassis, but don't count on it – in many radios, it is not!)  

If your ham gear is rolled off per the standard
and doesn't have its own "equalization" to fix it
(some  radios  do),  you  can  add  a  simple  RC
equalization  network  to  match  the  "flat"  re-
sponse of the pro mic to the rolled off response
of the ham gear.  The network consists of a ca-
pacitance in series with the wire from pin 2 to
the input of the ham gear.  Chose the capacitor
so that its reactance is equal to the input resis-
tance of the ham gear at 3 kHz, using the equa-
tion  C = 1 / 2π F X.  For example, if the input
resistance of the mic input stage is 1 K, use C of Fig A6-1c Response With Series Cap
about 0.027 uF (27 nF).  If your audio is still a bit dull, make the capacitance value even smaller. If
the audio is too thin, make the capacitance a bit larger. The Elecraft K3 has a built-in equalizer that
can easily be set to provide the needed compensation.   

Inexpensive Electret Mics  work very well with almost any ham rig.  Plantronics, first known for
their excellent miniature "star-set" operator headsets, now makes a wide variety of miniature head-
worn earsets and headsets for use with computers and cell phones.  Very good ones sell for about
$25; all it takes to use them with your ham rig is to connect them to your radio, adding a suitable
bias resistor between the V+ terminal and the audio terminal (see below).  You don't need a "gold
plated" mic sold by the rock and roll ham – a $25 Plantronics can give you very good and very
competitive audio at a fraction of the cost! 

There are three wires in the Plantronics cable, plus the shield. The shield goes to the chassis. Blue
is common for the mic and earphone, and goes to common on the mic jack. One wire is the ear-
phone, and goes to the audio out on the mic jack. The other wire is the mic, and goes to the mic
input. To figure out which wire is which, stick the eaphone in your ear and listen as you probe for
it with an ohmeter. When you hear the click, you've got the earphone. On the headsets I have,
white is the mic, red is the earphone, blue is common. 

You also need a bias resistor between the mic wire and +DC on the mic jack to provide bias for
the mic capsule. As I recall, I used something like 5K-10K, but I don't remember and I don't re -
member it being critical. See your radio's manual for connector pinout – Kenwood, Icom, TenTec,
and Yaesu all wire their mic jacks VERY differently. 

Fig A6-2a  Conceptual Laptop Mic Input #1 Fig A6-2b  Conceptual Laptop Mic Input #2
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Laptop Mic Inputs vary widely, and those who have studied them extensively say there are no real
standards.  Fig A6-2a is the most common configuration.  Fig A6-2b is another. The tip of the 1/8-
inch connector is the mic input, with the connector shell as the return.  The ring of the connector
is +5VDC through a 3.3K resistor (measured on my IBM Thinkpad).  Connect a dynamic mic be-
tween tip and sleeve.  This worked perfectly on my IBM T22, but MY IBM T41 uses a somewhat
different input circuit that was noisy and unstable with this simple connection.  I  tamed it by
adding 0.22 µF between tip and ring.  An electret ham mic may work with audio to tip and power
to ring. Or you may need to add resistance in series with the ring.  Or you may need the capacitor.
Or both.  

Over the last decade or so, manufacturers of laptops and smart phones have changed to a TRRS
jack that combines both mic and headphone audio. Again, several common wiring configurations
are  used,  and inexpensive  (but  not  very  robust)  adapters  that  provide  separate  jacks  for  mic
phones are widely available. A 

The Yamaha CM500 Headset is just about ideal
for ham radio. The headphones are quite com-
fortable, even for long periods in a contest, they
sound very good, and they have fairly good iso-
lation from room sounds. The mic sounds great
too (a  lot better than the Heil mics I've heard),
and it's response is nearly ideal for ham radio.
Not only that, it's a bargain, at about $60 from
good discount vendors of semi-pro audio prod-
ucts. All it needs is bias for its electret capsule
and a bit of low frequency rolloff to minimize
breath pops. With my K3, I set the three lowest
octave bands of the TX equalizer to full cut. For
rigs that lack an equalizer, simply add a small
capacitor in series with the mic input to the rig. Fig A6-3 Yamaha CM500 Headset

The CM500 plugs straight into the rear panel mic and headphone jacks on the K3, and to the mic
and headphone jacks of most computers.  For other rigs you will need a simple adapter to mate
the CM500's 1/8-inch 3-circuit plug with the rig's mic connector.  Wire a 3-circuit 1/8-inch jack
with the tip going to the rig's mic input, and connect a 5.6KΩ resistor between the tip and +8VDC
on the rig mic connector. Neither the resistor value nor the voltage is critical – anything from about
5V to 12V and from about 3.9KΩ to about 6.8KΩ will work. For lower voltages, use a lower resis-
tor value, for higher voltages a higher resistor value.  If you're going to add a small capacitor to roll
off the low end, place it in series between the two connectors, but with the 5.6K resistor connect-
ing to the microphone side of the capacitor.  See Chapter 7 for part numbers and internet sources
for good quality 1/8-inch plugs and jacks. 

Impedance of Loudspeakers and Headphones  The impedance of a transducer describes the rela-
tionship between voltage and current, just as with any other passive element.  These transducers
move air, so they require some power to operate.  Headphones move much less air than loud-
speakers, so needs much less power.  A transducer can take that power with a little voltage and a
lot of current (low impedance) a lot of voltage and a little current (high impedance), or anywhere
in between. 

The impedance of a dynamic transducer (loudspeaker, headphones, dynamic mics) is not constant
– it varies widely with frequency. The variations are the result of mechanical resonances in the
transducer and its enclosure.  Fig A6-4 is the impedance of a typical loudspeaker.  Headphone im-
pedance varies in a similar way, but manufacturers rarely publish graphs of their impedance.  By
international  standard,  the  impedance  of  a  transducer  is  defined as  the  minimum impedance
within the audio spectrum.  For most full-range transducers, the minimum impedance point is be-
tween 200 Hz and 1 kHz.  Most loudspeakers have an impedance between 4 and 16 ohms; head-
phones are typically 50 – 1,000 ohms. 
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Fig A6-4 – A typical small loudspeaker. 
The lower curve is impedance, upper curve is voltage sensitivity

Loudspeakers and Dynamic Mics are exactly the same in principal – a diaphragm mechanically
mounted to a coil, moving in the gap of a magnet. The loudspeaker is optimized to produce sound,
the mic to detect it. Good audio technicians know that loudspeakers and dynamic mic both work
in reverse. That is, if you momentarily connect ohmmeter probes or a battery to a dynamic mic,
you'll hear the diaphragm click, and if you connect a loudspeaker to a mic preamp, you'll hear
sound from the room that the loudspeaker is in. Many school intercoms work this way – the
speaker at the front of the classroom can be rigged to let the principal listen in!  

Loudspeaker and Headphone Sensitivity  This is a measure of  how much power is needed to
achieve a given sound pressure level.   Because the impedance of real  loudspeakers and head-
phones varies so widely with frequency, sensitivity (and the frequency response) is generally de-
fined at a constant voltage that produces 1 watt at the low impedance point.  The zero dB refer-
ence for sound pressure level is a very soft sound.  Small loudspeakers suitable for use in a ham
shack typically have sensitivity of 75 – 85 dB at one meter for one watt, but a more sensitive one
(85-95 dB) could help cut through road noise when operating mobile, especially if the speaker out-
put amplifier is on the anemic side.  

Power Amplifier Output Impedance  Loudspeakers are driven by power amplifiers that have very
low output impedances, typically a few tenths (or even hundredths) of an ohm.  The combination
of the power amplifier's output impedance and the loudspeaker form a simple voltage divider. The
output impedance must be small for two reasons: 1) so that power is not wasted; and 2) so that
the variable impedance of the loudspeaker does not modify the frequency response of the system. 

Headphone Outputs  are typically driven by small power amplifiers, or through series resistors
from the same power amplifier that drives the loudspeaker.  Why are the resistors needed?  Most
headphones use three circuit (stereo) plugs, but some use 2-circuit plugs.  When we plug stereo
headphones into the radio, we want to hear audio in both ears, so both tip and ring must be
driven.  The resistors are there to prevent the power amplifier from seeing a short circuit when a 2-
circuit (mono) phone plug is plugged into the headphone jack.  

Effect of the Resistors  The resistors, in effect, raise the output impedance at the headphone jack.
The resistors will do two things to the sound quality.  1) They will reduce the overall loudness; and
2) they will modify the frequency response.  Both of these effects will be small if the impedance of
the headphones is high (3x the resistor value), and greater if the impedance of the headphones is
low (equal to or smaller than the resistor value).  

Headphone Acoustic Types  Closed Ear headphones block room sounds, while  Open Air  head-
phones let sound from the room come through.  In the Ear headphones are miniature transducers
that fit in the ear.  

In the Ear Headphones  Professional quality In the Ear headphones can provide excellent isolation
from room noise, thanks to the acoustic seal formed between the earbud and the ear canal.  Better
models come with several pairs of "ear buds" to fit different size ears.  The ultimate in isolation and
comfort is achieved by having custom earmolds fitted by an audiologist.  I'm quite satisfied with
the stock earmolds that come standard with the Shure and Etymotic Research models listed below.

Noise Cancelling Headphones  work by picking up room sound from a microphones on the out-
side of each earphone, amplifying them, adding it to the electrical signal to each ear so that it is
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heard out of polarity with the acoustic leakage around the headphone's seal.  To cancel, the two
signals must be precisely equal in amplitude, precisely in phase, but also out of polarity at the ears.
The amplitude and phase match is much easier to achieve at lower frequencies, where the physical
spacing between the noise sense mic and the earphone is the smallest fraction of a wavelength,
and difficult where the spacing becomes a significant fraction of a wavelength, and thus contrib-
utes phase shift.  To some extent, this can be compensated by a digital delay network within the
electronics, but that adds both cost and battery drain.  

RECOMMENDED HEADPHONES FOR HAM RADIO APPLICATIONS  

Nearly any good quality hi-fi or professional headset will have very good sound quality for ham ra-
dio applications.  In order of importance, my criteria are:

 Physical comfort
 Noise isolation
 Compact size to fit in a briefcase  
 Impedance around 100 ohms is a good compromise between voltage sensitivity and less

interaction with the series protection resistors.  Lower impedance may provide more sound
level with some products that use lower value series resistors.  

AKG, Audio Technica, and Sony all make a wide range of very good Open Air headphones.  The
Sony MDR7506's are quite comfortable.  

Shure and Etymotic Research, both based near Chicago, make excellent In the Ear headphones.  I
like the Shure SE-series, and the Etymotic Research ER4. 

I consider  In the Ear  headphones a far better solution for ham radio than noise canceling head-
phones for three reasons.  First, the recommended In the Ear headphones provide much better iso-
lation from room sound than noise canceling models.  Second, I've seen several complaints of RFI
in some noise canceling headphones.  Third, In the Ear headphones are passive, so they are sim-
pler and less likely to fail. 

The earphones that are part of the Yamaha CM500 headset (see Fig A6-3) are also quite comfort-
able, and both phones and the mic sounds great, making the CM500 an excellent choice for ham
radio. 

RadioSport  headsets are aviation headsets customized for ham radio. I’ve tried them on several
times at ham events, and found them to be an instrument of torture. 

Sennheiser, based in Germany with factories there, in Ireland, and the US, makes a wide range of
open ear, closed ear, and in-ear headphones, including a few models with a boom mic. They are
well known for their high quality, but I’ve never used their headsets or even tried them on, be-
cause other very good choices were less expensive. 

BLUETOOTH AND HAM RADIO

Bluetooth is a digitally encoded transmission system. There are multiple versions of the protocol
for different applications. All have latency, the time it takes to convert analog to digital (A/D) for
transmission and back to audio (D/A) so that we humans can listen to it, but some versions have a
lot more latency that others. The very low latency version may be fast enough for some ham appli-
cations, but is unlikely to satisfy CW operators and others who do contesting. 


